Instrumental variable estimation for a time-varying treatment and a time-to-event outcome via structural nested cumulative failure time models

被引:0
|
作者
Joy Shi
Sonja A. Swanson
Peter Kraft
Bernard Rosner
Immaculata De Vivo
Miguel A. Hernán
机构
[1] Harvard T.H. Chan School of Public Health,Department of Epidemiology
[2] Harvard T.H. Chan School of Public Health,The CAUSALab
[3] Erasmus Medical Center,Department of Epidemiology
[4] Harvard T.H. Chan School of Public Health,Department of Biostatistics
[5] Brigham and Women’s Hospital and Harvard Medical School,Channing Division of Network Medicine, Department of Medicine
来源
BMC Medical Research Methodology | / 21卷
关键词
Mendelian randomization; Instrumental variable; Structural nested models; G-estimation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 17 条
  • [1] Instrumental variable estimation for a time-varying treatment and a time-to-event outcome via structural nested cumulative failure time models
    Shi, Joy
    Swanson, Sonja A.
    Kraft, Peter
    Rosner, Bernard
    De Vivo, Immaculata
    Hernan, Miguel A.
    BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
  • [2] Estimating the causal effect of a time-varying treatment on time-to-event using structural nested failure time models
    Lok, J
    Gill, R
    van der Vaart, A
    Robins, J
    STATISTICA NEERLANDICA, 2004, 58 (03) : 271 - 295
  • [3] Instrumental variables estimation of exposure effects on a time-to-event endpoint using structural cumulative survival models
    Martinussen, Torben
    Vansteelandt, Stijn
    Tchetgen, Eric J. Tchetgen
    Zucker, David M.
    BIOMETRICS, 2017, 73 (04) : 1140 - 1149
  • [4] G-estimation of structural nested restricted mean time lost models to estimate effects of time-varying treatments on a failure time outcome
    Hagiwara, Yasuhiro
    Shinozaki, Tomohiro
    Matsuyama, Yutaka
    BIOMETRICS, 2020, 76 (03) : 799 - 810
  • [5] Adjusting for time-varying confounders in survival analysis using structural nested cumulative survival time models
    Seaman, Shaun
    Dukes, Oliver
    Keogh, Ruth
    Vansteelandt, Stijn
    BIOMETRICS, 2020, 76 (02) : 472 - 483
  • [6] Instrumental variable estimation of the marginal structural Cox model for time-varying treatments
    Cui, Y.
    Michael, H.
    Tanser, F.
    Tchetgen, E. Tchetgen
    BIOMETRIKA, 2023, 110 (01) : 101 - 118
  • [7] A Bayesian approach for instrumental variable analysis with censored time-to-event outcome
    Li, Gang
    Lu, Xuyang
    STATISTICS IN MEDICINE, 2015, 34 (04) : 664 - 684
  • [8] Structural Nested Cumulative Failure Time Models to Estimate the Effects of Interventions
    Picciotto, Sally
    Hernan, Miguel A.
    Page, John H.
    Young, Jessica G.
    Robins, James M.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (499) : 886 - 900
  • [9] Estimating and improving dynamic treatment regimes with a time-varying instrumental variable
    Chen, Shuxiao
    Zhang, Bo
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (02) : 427 - 453
  • [10] Structural Nested Mean Models for Assessing Time-Varying Effect Moderation
    Almirall, Daniel
    Ten Have, Thomas
    Murphy, Susan A.
    BIOMETRICS, 2010, 66 (01) : 131 - 139