On a limit of perturbed conservation laws with saturating diffusion and non-positive dispersion

被引:0
|
作者
N. Bedjaoui
J. M. C. Correia
Y. Mammeri
机构
[1] Université de Picardie Jules Verne,Laboratoire Amiénois de Mathématique Fondamentale et Appliquée CNRS UMR 7352
[2] Universidade de Évora & IST,DMat
来源
Zeitschrift für angewandte Mathematik und Physik | 2020年 / 71卷
关键词
Saturating diffusion; Nonlinear dispersion; KdV–Burgers equation; Hyperbolic conservation laws; Entropy measure-valued solutions; 35Q53; 35B25; 35L65; 35G25; 76B15;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a conservation law with convex flux, perturbed by a saturating diffusion and non-positive dispersion of the form ut+f(u)x=ε(ux1+ux2)x-δ(|uxx|n)x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t + f(u)_x = \varepsilon \Big ( {u_{x}\over \sqrt{1 + u_x^2}} \Big )_x - \delta (|u_{xx}|^n)_x$$\end{document}. We prove the convergence of the solutions {uε,δ}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{u^{\varepsilon , \delta }\}$$\end{document} to the entropy weak solution of the hyperbolic conservation law, ut+f(u)x=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_t + f(u)_x = 0,$$\end{document} for all real number 1≤n≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le n \le 2$$\end{document} provided δ=o(εn(n+1)2;εn+1n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta = o(\varepsilon ^{n(n+1)\over 2}; \varepsilon ^{n+1\over n })$$\end{document}.
引用
收藏
相关论文
共 23 条