Candidate pathways and genes for prostate cancer: a meta-analysis of gene expression data

被引:0
作者
Ivan P Gorlov
Jinyoung Byun
Olga Y Gorlova
Ana M Aparicio
Eleni Efstathiou
Christopher J Logothetis
机构
[1] The University of Texas M. D. Anderson Cancer Center,Department of Genitourinary Medical Oncology
[2] The University of Texas M. D. Anderson Cancer Center,Department of Epidemiology
来源
BMC Medical Genomics | / 2卷
关键词
Prostate Cancer; Metastatic Prostate Cancer; Prostatic Intraepithelial Neoplasia; Integrin Signaling; Prostate Cancer Development;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 386 条
[1]  
Ochsner SA(2009)GEMS (Gene Expression MetaSignatures), a Web resource for querying meta-analysis of expression microarray datasets: 17beta-estradiol in MCF-7 cells Cancer Res 69 23-26
[2]  
Steffen DL(2008)Gene set enrichment analysis for non-monotone association and multiple experimental categories BMC Bioinformatics 9 481-1606
[3]  
Hilsenbeck SG(2008)Bayesian models and meta-analysis for multiple tissue gene expression data following corticosteroid administration BMC Bioinformatics 9 354-53
[4]  
Chen ES(2008)A resampling-based meta-analysis for detection of differential gene expression in breast cancer BMC Cancer 8 396-2886
[5]  
Watkins C(2007)Meta-analysis of gene expression data: a predictor-based approach Bioinformatics 23 1599-2979
[6]  
McKenna NJ(2004)Prognostic meta-signature of breast cancer developed by two-stage mixture modeling of microarray data BMC Genomics 5 94-3444
[7]  
Lin R(2008)A Bayesian mixture model for metaanalysis of microarray studies Funct Integr Genomics 8 43-34
[8]  
Dai S(2008)Reconstructing tumor-wise protein expression in tissue microarray studies using a Bayesian cell mixture model Bioinformatics 24 2880-8
[9]  
Irwin RD(2006)Identification and meta-analysis of a small gene expression signature for the diagnosis of estrogen receptor status in invasive ductal breast cancer Int J Cancer 119 2974-118
[10]  
Heinloth AN(2008)A functional Notch-survivin gene signature in basal breast cancer Breast Cancer Res 10 R97-4359