Rigidity of Willmore submanifolds and extremal submanifolds in the unit sphere

被引:0
作者
Deng-Yun Yang
Hai-Ping Fu
Jin-Guo Zhang
机构
[1] Jiangxi Normal University,School of Mathematics and Statistics
[2] Nanchang University,Department of Mathematics
来源
Archiv der Mathematik | 2023年 / 121卷
关键词
Willmore submanifold; Sobolev inequality; Integral Ricci curvature; Extremal submanifold; Primary 53C40; Secondary 53C24;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be an n-dimensional (n≥4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n\ge 4)$$\end{document} compact Willmore (or extremal) submanifold in the unit sphere Sn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^{n+p}$$\end{document}. Denote by Ric\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Ric}}$$\end{document} and H the Ricci curvature and the mean curvature of M, respectively. It is proved that if (∫M(Ric-λ)n2)2n<A(n,λ,H,ρ)(orB(n,λ,H,ρ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\int _M ({\text {Ric}}_-^{\lambda })^\frac{n}{2})^\frac{2}{n}<A(n,\lambda ,H,\rho )~ (\text{ or }\ B(n,\lambda ,H,\rho ))$$\end{document}, then M is a totally umbilical sphere, where A(n,λ,H,ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(n,\lambda ,H,\rho )$$\end{document} and B(n,λ,H,ρ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B(n,\lambda ,H,\rho )$$\end{document} are two explicit positive constants depending on n, λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, H, and ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}. This extends parts of the results from a pointwise Ricci curvature lower bound to an integral Ricci curvature lower bound.
引用
收藏
页码:329 / 342
页数:13
相关论文
共 30 条
[1]  
Bryant RL(1984)A duality theorem for Willmore surfaces J. Differ. Geom. 20 23-53
[2]  
Castro I(2001)Willmore surfaces of R Ann. Global Anal. Geom. 19 153-175
[3]  
Urbano F(2004) and the Whitney sphere Taiwan. J. Math. 8 467-476
[4]  
Chang YC(1974)Willmore surfaces in the unit Boll. Un. Mat. Ital. 10 380-385
[5]  
Hsu YJ(2021)-sphere J. Geom. Anal. 31 4923-4933
[6]  
Chen BY(1982)Some conformal invariants of submanifolds and their applications Indiana Univ. Math. J. 31 209-211
[7]  
Chen H(2007)Rigidity of minimal submanifolds in space forms Monatsh. Math. 152 295-302
[8]  
Wei GF(2001)A counter example for Weiner’s open question Results Math. 40 205-225
[9]  
Ejiri N(2002)A variational problem for submanifolds in a sphere Ann. Global Anal. Geom. 21 203-213
[10]  
Guo Z(2002)The second variation formula for Willmore submanifolds in Math. Res. Lett. 9 771-790