Fluid properties impact on energy separation in Ranque–Hilsch vortex tube

被引:0
|
作者
Ahmad Alsaghir
Mohammad O. Hamdan
Mehmet F. Orhan
机构
[1] American University of Sharjah,Department of Mechanical Engineering
来源
SN Applied Sciences | 2022年 / 4卷
关键词
Vortex tube; Viscous dissipation; Turbulence models; Gases energy separation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper examines the energy separation in vortex tubes which is a passive device that can split a pressurized room temperature gas stream to hot and cold streams. The paper employs numerical simulations to investigate the impact of various working fluids such as helium, air, oxygen, nitrogen, and carbon dioxide on the energy separation in the vortex tube, using the SST k-ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k{-}\omega$$\end{document} turbulence model with viscous heating. A three-dimensional numerical investigation is sued to examine the effect of a single fluid property on vortex tube performance, while keeping the rest of the fluid properties unchanged, which is impossible to achieve via experimental study. The numerical investigation examines the influence of molecular weight, heat capacity, thermal conductivity, and dynamic viscosity on energy separation. The results show that energy separation performance improves with lower molecular weight and heat capacity, and higher dynamic viscosity of the working fluids, while no impact of the thermal conductivity is observed. Out of five gases tested in this study, helium has yielded the maximum temperature separation, while carbon dioxide has yielded the lowest performance. Results show that viscous dissipation contributes to the temperature separation in vortex tube.
引用
收藏
相关论文
共 50 条
  • [1] Fluid properties impact on energy separation in Ranque-Hilsch vortex tube
    Alsaghir, Ahmad
    Hamdan, Mohammad O.
    Orhan, Mehmet F.
    SN APPLIED SCIENCES, 2022, 4 (08):
  • [2] Analytical investigation on energy separation in Ranque-Hilsch vortex tube
    Karthik, A., V
    Nayak, Vighnesha
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2021, 80 (5-6) : 136 - 154
  • [3] Energy separation for Ranque-Hilsch vortex tube: A short review
    Hu, Zhuohuan
    Li, Rui
    Yang, Xin
    Yang, Mo
    Day, Rodney
    Wu, Hongwei
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2020, 19 (19)
  • [4] Species separation in Ranque-Hilsch vortex tube using air as working fluid
    M. Chatterjee
    S. Mukhopadhyay
    P. K. Vijayan
    Heat and Mass Transfer, 2018, 54 : 3559 - 3572
  • [5] Computational investigation of precessing vortex breakdown and energy separation in a Ranque-Hilsch vortex tube
    Guo, Xiangji
    Zhang, Bo
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2018, 85 : 42 - 57
  • [6] Fluid dynamic analysis of a Ranque-Hilsch vortex tube
    Secchiaroli, A.
    Ricci, R.
    Montelpare, S.
    D'Alessandro, V.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-COLLOQUIA ON PHYSICS, 2009, 32 (02): : 85 - 88
  • [7] Species separation in Ranque-Hilsch vortex tube using air as working fluid
    Chatterjee, M.
    Mukhopadhyay, S.
    Vijayan, P. K.
    HEAT AND MASS TRANSFER, 2018, 54 (12) : 3559 - 3572
  • [8] A MODEL OF GAS SEPARATION IN A RANQUE-HILSCH VORTEX TUBE
    LINDERST.CU
    ACTA POLYTECHNICA SCANDINAVICA-PHYSICS INCLUDING NUCLEONICS SERIES, 1967, (45): : 6 - &
  • [9] Numerical investigations of the compressible flow and the energy separation in the Ranque-Hilsch vortex tube
    Fröhlingsdorf, W
    Unger, H
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1999, 42 (03) : 415 - 422
  • [10] THE RANQUE-HILSCH VORTEX TUBE
    SCHELLER, WA
    BROWN, GM
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1957, 49 (06): : 1013 - 1016