Statistical downscaling for precipitation projections in West Africa

被引:0
|
作者
Andrew Polasky
Jenni L. Evans
Jose D. Fuentes
机构
[1] The Pennsylvania State University,Department of Meteorology and Atmospheric Science
[2] The Pennsylvania State University,Institute for Computational and Data Sciences
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The West Africa region (5∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document} to 20∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}N and 10∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}E to 20∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^\circ$$\end{document}W) is particularly vulnerable to climate change due to a combination of unique geographic features, meteorological conditions, and socio-economic factors. Drastic changes in precipitation (e.g., droughts or floods) in the region can have dramatic impacts on rain-fed agriculture, water availability, and disease risks for the region’s population. Quantifying these risks requires localized climate projections at a higher resolution than is generally available from general circulation models. Using self-organizing maps, we produce station-based downscaled precipitation projections for medium and high-emission climate scenarios for this region. Compared to historical observations, the downscaled values are able to match the historical range of the distribution, and recreate the seasonal variability for the inland portions of the region, but struggle with the seasonal cycle along the coast. We find a decrease in the interior Sahel region by an average of 10% by 2100 under the high greenhouse gas-emission scenario of Shared Socioeonomic Pathway 5-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}8.5. Precipitation decreases in the Sahel are primarily driven by reductions in the number of rainy days during the wet season, rather than by consistent decreases in the magnitude of the precipitation amounts or decreases in the average length of the wet season.
引用
收藏
页码:327 / 347
页数:20
相关论文
共 50 条
  • [41] Statistical downscaling relationships for precipitation in the Netherlands and North Germany
    Beckmann, BR
    Buishand, TA
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2002, 22 (01) : 15 - 32
  • [42] Statistical Downscaling Prediction of Summer Precipitation in Southeastern China
    Liu Ying
    Fan Ke
    Wang Hui-Jun
    ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2011, 4 (03) : 173 - 180
  • [43] Coupling statistical and dynamical methods for spatial downscaling of precipitation
    Chen, Jie
    Brissette, Francois P.
    Leconte, Robert
    CLIMATIC CHANGE, 2012, 114 (3-4) : 509 - 526
  • [44] A statistical downscaling scheme to improve global precipitation forecasting
    Sun, Jianqi
    Chen, Huopo
    METEOROLOGY AND ATMOSPHERIC PHYSICS, 2012, 117 (3-4) : 87 - 102
  • [45] Statistical downscaling of precipitation using machine learning techniques
    Sachindra, D. A.
    Ahmed, K.
    Rashid, Md. Mamunur
    Shahid, S.
    Perera, B. J. C.
    ATMOSPHERIC RESEARCH, 2018, 212 : 240 - 258
  • [46] Annual statistical downscaling of precipitation and evaporation and monthly disaggregation
    Sachindra, D. A.
    Perera, B. J. C.
    THEORETICAL AND APPLIED CLIMATOLOGY, 2018, 131 (1-2) : 181 - 200
  • [47] Development and Evaluation of Statistical Downscaling Models for Monthly Precipitation
    Goly, Aneesh
    Teegavarapu, Ramesh S. V.
    Mondal, Arpita
    EARTH INTERACTIONS, 2014, 18 : 1 - 28
  • [48] Precipitation projections over the Indus River Basin of Pakistan for the 21st century using a statistical downscaling framework
    Pomee, Muhammad Saleem
    Hertig, Elke
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2022, 42 (01) : 289 - 314
  • [49] A statistical downscaling scheme to improve global precipitation forecasting
    Jianqi Sun
    Huopo Chen
    Meteorology and Atmospheric Physics, 2012, 117 : 87 - 102
  • [50] TRANSFER FUNCTION MODELS FOR STATISTICAL DOWNSCALING OF MONTHLY PRECIPITATION
    Hadipour, Sahar
    Harun, Sobri
    Arefnia, Ali
    Alamgir, Mahiuddin
    JURNAL TEKNOLOGI, 2016, 78 (9-4): : 55 - 62