Convolution properties of some classes of analytic functions

被引:1
|
作者
Ponnusamy S. [1 ]
Singh V. [1 ]
机构
关键词
Analytic Function; Convolution; Convolution Property;
D O I
10.1007/BF02358538
中图分类号
学科分类号
摘要
Let A denote the class of functions which are analytic in \z\ < 1 and normalized so that f′(0) = 0 and f′(0) = 1, and let R(α,β) ⊂ A be the class of functions f such that Re[f′(z) + αz f″(z)] > β, Re α > 0, β < 1. We determine conditions under which (i) f ∈ R(α1,β1), g ∈ R(α2,β2) implies that the convolution f * g of f and g is convex; (ii) f ∈ R(0,β1), g ∈ R(0,β2) implies that f * g is starlike; (iii) f ∈ A such that f′(z)[f(z)/z]μ-1 ≺ 1 + λz, μ > 0, 0 < λ < 1, is starlike, and (iv) f ∈ A such that f′(z) + αzf″(z) ≺ 1 + δz, α > 0, δ > 0, is convex or starlike. Bibliography: 16 titles. © 1998 Plenum Publishing Corporation.
引用
收藏
页码:1008 / 1020
页数:12
相关论文
共 50 条
  • [21] Some classes of analytic and multivalent functions involving a linear operator
    Xu, N-Eng
    Yang, Ding-Gong
    MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (5-6) : 955 - 965
  • [22] Some Properties for Subordinations of Analytic Functions
    Guney, Hatun Ozlem
    Breaz, Daniel
    Owa, Shigeyoshi
    AXIOMS, 2023, 12 (02)
  • [23] Classes of harmonic functions defined by convolution
    Dziok, Jacek
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (02): : 399 - 416
  • [24] Classes of harmonic functions defined by convolution
    Jacek Dziok
    Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 399 - 416
  • [25] The Gelfand and Bernstein n-widths of some classes of analytic functions
    Parfenov O.G.
    Journal of Mathematical Sciences, 1997, 85 (2) : 1827 - 1838
  • [26] On the best approximation of some classes of analytic functions in weighted Bergman spaces
    Shabozov, M. Sh.
    Shabozov, O. Sh.
    DOKLADY MATHEMATICS, 2007, 75 (01) : 97 - 100
  • [27] CONVOLUTION PROPERTIES FOR ANALYTIC FUNCTIONS DEFINED BY q-DIFFERENCE OPERATOR
    Cetinkaya, Asena
    Sen, Arzu Yemisci
    Polatoglu, Yasar
    HONAM MATHEMATICAL JOURNAL, 2018, 40 (04): : 681 - 689
  • [28] THE CONVOLUTION OF FINITE NUMBER OF ANALYTIC FUNCTIONS
    Sharma, Poonam
    Raina, Ravinder Krishna
    Sokol, Janusz
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2019, 105 (119): : 49 - 63
  • [29] On the best approximation of some classes of analytic functions in weighted Bergman spaces
    M. Sh. Shabozov
    O. Sh. Shabozov
    Doklady Mathematics, 2007, 75 : 97 - 100
  • [30] SOME PROPERTIES OF GENERALIZED CONVOLUTION OF HARMONIC UNIVALENT FUNCTIONS
    Porwal, Saurabh
    Dixit, K. K.
    DEMONSTRATIO MATHEMATICA, 2013, 46 (01) : 63 - 74