A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics

被引:0
|
作者
Jeroen Bleker
Thomas C. Kwee
Dennis Rouw
Christian Roest
Jaap Borstlap
Igle Jan de Jong
Rudi A. J. O. Dierckx
Henkjan Huisman
Derya Yakar
机构
[1] University of Groningen,Medical Imaging Center, Departments of Radiology, Nuclear Medicine and Molecular Imaging, University Medical Center Groningen
[2] Martini Hospital Groningen,Department of Radiology
[3] Treant Zorggroep,Department of Radiology
[4] University of Groningen,Department of Urology, University Medical Center Groningen
[5] Radboud University Medical Center,Department of Radiology and Nuclear Medicine
来源
European Radiology | 2022年 / 32卷
关键词
Biomarkers; Deep learning; Prostatic neoplasms; Multi-center study; Data curation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:6526 / 6535
页数:9
相关论文
共 50 条
  • [1] A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics
    Bleker, Jeroen
    Kwee, Thomas C.
    Rouw, Dennis
    Roest, Christian
    Borstlap, Jaap
    de Jong, Igle Jan
    Dierckx, Rudi A. J. O.
    Huisman, Henkjan
    Yakar, Derya
    EUROPEAN RADIOLOGY, 2022, 32 (09) : 6526 - 6535
  • [2] ProGNet: Prostate Gland Segmentation on MRI with Deep Learning
    Soerensen, Simon John Christoph
    Fan, Richard
    Seetharaman, Arun
    Chen, Leo
    Shao, Wei
    Bhattacharya, Indrani
    Borre, Michael
    Chung, Benjamin
    To'o, Katherine
    Sonn, Geoffrey
    Rusu, Mirabela
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [3] MRI-Based Deep Learning Segmentation and Radiomics of Sarcoma in Mice
    Holbrook, M. D.
    Blocker, S. J.
    Mowery, Y. M.
    Badea, A.
    Qi, Y.
    Xu, E. S.
    Kirsch, D. G.
    Johnson, G. A.
    Badea, C. T.
    TOMOGRAPHY, 2020, 6 (01) : 23 - 33
  • [4] Automated Meningioma Segmentation in Multiparametric MRI Comparable Effectiveness of a Deep Learning Model and Manual Segmentation
    Laukamp, Kai Roman
    Pennig, Lenhard
    Thiele, Frank
    Reimer, Robert
    Goertz, Lukas
    Shakirin, Georgy
    Zopfs, David
    Timmer, Marco
    Perkuhn, Michael
    Borggrefe, Jan
    CLINICAL NEURORADIOLOGY, 2021, 31 (02) : 357 - 366
  • [5] Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning
    Yu-Chun Lin
    Gigin Lin
    Sumit Pandey
    Chih-Hua Yeh
    Jiun-Jie Wang
    Chien-Yu Lin
    Tsung-Ying Ho
    Sheung-Fat Ko
    Shu-Hang Ng
    European Radiology, 2023, 33 : 6548 - 6556
  • [6] Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning
    Lin, Yu-Chun
    Lin, Gigin
    Pandey, Sumit
    Yeh, Chih-Hua
    Wang, Jiun-Jie
    Lin, Chien-Yu
    Ho, Tsung-Ying
    Ko, Sheung-Fat
    Ng, Shu-Hang
    EUROPEAN RADIOLOGY, 2023, 33 (09) : 6548 - 6556
  • [7] Semi-Supervised Segmentation of Renal Pathology: An Alternative to Manual Segmentation and Input to Deep Learning Training
    Kline, Adrienne
    Chung, Hyun Jae
    Rahmani, Waleed
    Chun, Justin
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 2688 - 2691
  • [8] Deep learning for MRI lesion segmentation in rectal cancer
    Yang, Mingwei
    Yang, Miyang
    Yang, Lanlan
    Wang, Zhaochu
    Ye, Peiyun
    Chen, Chujie
    Fu, Liyuan
    Xu, Shangwen
    FRONTIERS IN MEDICINE, 2024, 11
  • [9] Development and Validation of a Biparametric MRI Deep Learning Radiomics Model with Clinical Characteristics for Predicting Perineural Invasion in Patients with Prostate Cancer
    Zhang, Yue-yue
    Mao, Hui-min
    Wei, Chao-gang
    Chen, Tong
    Zhao, Wen-lu
    Chen, Liang-yan
    Shen, Jun-kang
    Guo, Wan-liang
    ACADEMIC RADIOLOGY, 2024, 31 (12) : 5054 - 5065
  • [10] A Comparative Study of Automated Deep Learning Segmentation Models for Prostate MRI
    Rodrigues, Nuno M. M.
    Silva, Sara
    Vanneschi, Leonardo
    Papanikolaou, Nickolas
    CANCERS, 2023, 15 (05)