Reverse image filtering with clean and noisy filters

被引:0
作者
Lizhong Wang
Pierre-Alain Fayolle
Alexander G. Belyaev
机构
[1] Heriot-Watt University,
[2] University of Aizu,undefined
来源
Signal, Image and Video Processing | 2023年 / 17卷
关键词
Reverse filtering; Landweber iterations; Deblurring; Image super-resolution; Phase correction;
D O I
暂无
中图分类号
学科分类号
摘要
Given an image filter y=f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{y}}}={{\varvec{f}}}\,({{\varvec{x}}})$$\end{document}, where x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{x}}}$$\end{document} and y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{y}}}$$\end{document} are input and output images, respectively, reverse image filtering consists of rendering an approximation to x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{x}}}$$\end{document} from y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{y}}}$$\end{document} using the filter f(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\varvec{f}}}\,(\cdot )$$\end{document} itself as a black box, without knowing the internal structure of the filter. In this paper, we propose to use modified Landweber iterations for reverse image filtering, evaluate the performance of our approach, and present applications to image deblurring and super-resolution. An important advantage of our approach over the existing reverse image filtering methods is high robustness to noise.
引用
收藏
页码:333 / 341
页数:8
相关论文
共 52 条
[1]  
Anger J(2019)Blind image deblurring using the l0 gradient prior Image Process. Line 9 124-142
[2]  
Facciolo G(2021)Two iterative methods for reverse image filtering Signal. Image. Video. Process. 15 1565-1573
[3]  
Delbracio M(2011)An augmented Lagrangian method for total variation video restoration IEEE Trans. Image Process. 20 3097-111
[4]  
Belyaev AG(2021)iFlowGAN: An invertible flow-based generative adversarial network for unsupervised image-to-image translation IEEE Trans. Pattern. Anal. Mach. Intell. 20 61-63
[5]  
Fayolle PA(2003)Lost knowledge refound: sharpened FIR filters IEEE Signal Process. Mag. 27 1-10
[6]  
Chan SH(2008)Edge-preserving decompositions for multi-scale tone and detail manipulation Acm Trans. Graph. 30 1-12
[7]  
Khoshabeh R(2011)Domain transform for edge-aware image and video processing ACM Trans. Graph. 25 415-422
[8]  
Gibson KB(1977)Sharpening the response of a symmetric nonrecursive filter by multiple use of the same filter IEEE Trans. Acoust. Speech Signal Process. 73 615-624
[9]  
Gill PE(1951)An iteration formula for Fredholm integral equations of the first kind Am. J. Math. 30 1-12
[10]  
Nguyen TQ(2011)Image smoothing via L0 gradient minimization ACM Trans. Graph. 37 43-54