From Constructive Field Theory to Fractional Stochastic Calculus. (II) Constructive Proof of Convergence for the Lévy Area of Fractional Brownian Motion with Hurst Index \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\alpha}\,{\in}\,(\frac{1}{8},\frac{1}{4})}$$\end{document}

被引:0
作者
Jacques Magnen
Jérémie Unterberger
机构
[1] Ecole Polytechnique,CPHT
[2] CNRS,undefined
[3] Université Henri Poincaré,undefined
关键词
Feynman Diagram; Fractional Brownian Motion; Local Part; Cluster Expansion; Hurst Index;
D O I
10.1007/s00023-011-0119-y
中图分类号
学科分类号
摘要
Let B = (B1(t), . . . ,Bd(t)) be a d-dimensional fractional Brownian motion with Hurst index α < 1/4, or more generally a Gaussian process whose paths have the same local regularity. Defining properly iterated integrals of B is a difficult task because of the low Hölder regularity index of its paths. Yet rough path theory shows it is the key to the construction of a stochastic calculus with respect to B, or to solving differential equations driven by B. We intend to show in a series of papers how to desingularize iterated integrals by a weak, singular non-Gaussian perturbation of the Gaussian measure defined by a limit in law procedure. Convergence is proved by using “standard” tools of constructive field theory, in particular cluster expansions and renormalization. These powerful tools allow optimal estimates and call for an extension of Gaussian tools such as, for instance, the Malliavin calculus. After a first introductory paper (Magnen and Unterberger in From constructive theory to fractional stochastic calculus. (I) An introduction: rough path theory and perturbative heuristics, 2011), this one concentrates on the details of the constructive proof of convergence for second-order iterated integrals, also known as Lévy area. A summary in French may be found in Unterberger (Mode d’emploi de la théorie constructive des champs bosoniques, avec une application aux chemins rugueux, 2011).
引用
收藏
页码:209 / 270
页数:61
相关论文
共 58 条
  • [1] Abdesselam A.(1997)An explicit large versus small field multiscale cluster expansion Rev. Math. Phys. 9 123-199
  • [2] Rivasseau V.(1998)Explicit fermionic tree expansions Lett. Math. Phys. 44 77-88
  • [3] Abdesselam A.(1980)On the ultraviolet stability in the Euclidean scalar field theories Commun. Math. Phys. 71 95-130
  • [4] Rivasseau V.(1992)Renormalization group and the Fermi surface in the Luttinger model Phys. Rev. B 45 5468-5480
  • [5] Benfatto G.(1987)Mayer expansion of the Hamilton-Jacobi equation J. Stat. Phys. 49 19-49
  • [6] Cassandro M.(2003)Log-infinitely divisible multifractal processes Commun. Math. Phys. 236 449-475
  • [7] Gallavotti G.(2002)Stochastic analysis, rough path analysis and fractional Brownian motions Probab. Theory Relat. Fields 122 108-140
  • [8] Nicolò F.(1987)Construction and Borel summability of infrared Commun. Math. Phys. 109 437-480
  • [9] Olivieri E.(1992) by a phase space expansion Helv. Phys. Acta 65 679-252
  • [10] Pressutti E.(1985)An infinite volume expansion for many Fermions Green’s functions Commun. Math. Phys. 99 197-376