Multiple solutions for a superlinear and periodic elliptic system on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^N}$$\end{document}

被引:0
作者
Fukun Zhao
Leiga Zhao
Yanheng Ding
机构
[1] Yunnan Normal University,Department of Mathematics
[2] Beijing University of Chemical technology,Department of Mathematics
[3] AMSS,Institute of Mathematics
[4] CAS,undefined
关键词
35J50; 35J55; Hamiltonian elliptic system; Variational method; Strongly indefinite functionals;
D O I
10.1007/s00033-010-0105-0
中图分类号
学科分类号
摘要
This paper is concerned with the following periodic Hamiltonian elliptic system \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left \{\begin{array}{l}-\Delta u+V(x)u=g(x,v)\, {\rm in }\,\mathbb{R}^N,\\-\Delta v+V(x)v=f(x,u)\, {\rm in }\, \mathbb{R}^N,\\ u(x)\to 0\, {\rm and}\,v(x)\to0\, {\rm as }\,|x|\to\infty,\end{array}\right.$$\end{document}where the potential V is periodic and 0 lies in a gap of the spectrum of −Δ + V, f(x, t) and g(x, t) depend periodically on x and are superlinear but subcritical in t at infinity. By establishing a variational setting, existence of a ground state solution and multiple solution for odd f and g are obtained.
引用
收藏
页码:495 / 511
页数:16
相关论文
共 45 条
[1]  
Alves C.O.(2002)On the existence of positive solutions of a perturbed Hamiltonian system in J. Math. Anal. Appl. 276 673-690
[2]  
Carrião P.C.(2003)On the existence and shape of least energy solutions for some elliptic systems J. Diff. Eqns. 191 348-376
[3]  
Miyagaki O.H.(2006)Deformation theorems on non-metrizable vector spaces and applications to critical point theory Math. Nach. 279 1-22
[4]  
Ávila A.I.(1979)Critical point theorems for indefinite functionals Inven. Math. 52 241-273
[5]  
Yang J.(1991)Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials J. Am. Math. Soc. 4 693-727
[6]  
Bartsch T.(2003)Strongly indefinite functionals and multiple solutions of elliptic systems Tran. Am. Math. Soc. 355 2973-2989
[7]  
Ding Y.(1994)On superquadratic elliptic systems Tran. Am. Math. Soc. 343 97-116
[8]  
Benci V.(2005)An Orlicz-space approach to superlinear elliptic systems J. Func. Anal. 224 471-496
[9]  
Rabinowitz P.H.(1998)Decay, symmetry and existence of solutions of semilinear elliptic systems Nonlinear Anal. 33 211-234
[10]  
Coti Zelati V.(1993)Differential systems with strongly variational structure J. Func. Anal. 114 32-58