SuperDense Quantum Teleportation

被引:0
|
作者
Herbert J. Bernstein
机构
[1] Hampshire College,School of Natural Science and Institute for Science and Interdisciplinary Studies
来源
Quantum Information Processing | 2006年 / 5卷
关键词
Teleportation; Quantum information; Dense coding; Qutrits; QuNits; Quantum teleportation; 03.65.Ud; 03.67.Hk; 03.67.-a;
D O I
暂无
中图分类号
学科分类号
摘要
Recent advances in experimental technique make SuperDense Teleportation (SDT) possible only now, ten years after my first proposal at an ISI Torino summer conference on Quantum Computing. The effect uses remote state preparation to send more state-specifying parameters per bit than ordinary quantum teleportation (QT) can transmit. The SDT uses a maximally entangled state to teleport the relative phases of an n-dimensional state with equal amplitudes on every standard basis vector. For n greater than or equal to 3, the SDT sends more of these state-specifying parameters than QT. In the limit of large n the ratio is 2 to 1, hence the nomenclature by analogy with Super Dense Coding. Alice’s measurements and Bob’s transformations are far simpler than their corresponding operations in QT. The roles of Charles who chooses the state and Diana who deploys it are different than in QT. My discussion includes a brief review of the progress and possibilities of realization for several different experimental approaches around the world. This paper is the write-up of my remarks at the Festschrift conference for Anton Zeilinger, for many years a close collaborator in the Hampshire College NSF grant continuing our work with Mike Horne and Danny Greenberger started under Cliff Shull at MIT in the late 20th century.
引用
收藏
页码:451 / 461
页数:10
相关论文
共 50 条
  • [31] Quantum teleportation of propagating quantum microwaves
    R Di Candia
    KG Fedorov
    L Zhong
    S Felicetti
    EP Menzel
    M Sanz
    F Deppe
    A Marx
    R Gross
    E Solano
    EPJ Quantum Technology, 2
  • [32] Unity gain and nonunity gain quantum teleportation
    Bowen, WP
    Treps, N
    Buchler, BC
    Schnabel, R
    Ralph, TC
    Symul, T
    Lam, PK
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003, 9 (06) : 1519 - 1532
  • [33] Quantum Teleportation with Remote Rotation on a GHZ State
    Hsu, Jung-Lun
    Chen, Yu-Ting
    Tsai, Chia-Wei
    Hwang, Tzonelih
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (04) : 1233 - 1238
  • [34] Quantum Teleportation with Remote Rotation on a GHZ State
    Jung-Lun Hsu
    Yu-Ting Chen
    Chia-Wei Tsai
    Tzonelih Hwang
    International Journal of Theoretical Physics, 2014, 53 : 1233 - 1238
  • [35] Quantum entanglement and teleportation using statistical correlations
    Kumar, Atul
    Krishnan, Mangala Sunder
    JOURNAL OF CHEMICAL SCIENCES, 2009, 121 (05) : 767 - 775
  • [36] Dynamics of quantum correlations in quantum teleportation
    El Anouz, K.
    El Aouadi, I
    El Allati, A.
    Mourabit, T.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (10):
  • [37] Quantum teleportation and quantum information processing
    Furusawa, Akira
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING (QCMC): THE TENTH INTERNATIONAL CONFERENCE, 2011, 1363
  • [38] Shared Quantum Key Distribution Based on Asymmetric Double Quantum Teleportation
    Cardoso-Isidoro, Carlos
    Delgado, Francisco
    SYMMETRY-BASEL, 2022, 14 (04):
  • [39] When Entanglement Meets Classical Communications: Quantum Teleportation for the Quantum Internet
    Cacciapuoti, Angela Sara
    Caleffi, Marcello
    Van Meter, Rodney
    Hanzo, Lajos
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (06) : 3808 - 3833
  • [40] Multi-output quantum teleportation of different quantum information with optimal quantum resources
    Kumar, Satish
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (04)