Semidefinite relaxations of dynamical programs under discrete constraints

被引:0
作者
Camilo Ortiz
René Meziat
机构
[1] Universidad de los Andes,Departamento de Ingeniería Industrial
[2] Universidad de los Andes,Departamento de Matemáticas
来源
Optimization Letters | 2010年 / 4卷
关键词
Dynamic programming; Integer programming; Semidefinite relaxations; Method of moments; Chess; Inventory problem;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we propose an exact semidefinite relaxation for non-linear, non-convex dynamical programs under discrete constraints in the state variables and the control variables. We outline some theoretical features of the method and workout the solutions of a benchmark problem in cybernetics and the classical inventory problem under discrete constraints.
引用
收藏
页码:567 / 583
页数:16
相关论文
共 21 条
[1]  
Curto R.(1991)Recursiveness, positivity, and truncated moment problems Houst. J. Math. 17 603-1358
[2]  
Fialkow L.A.(2006)Parametric optimization and optimal control using algebraic geometry methods Int. J. Control 79 1340-128
[3]  
Fotiou I.A.(2004)Symmetry groups, semidefinite programs, and sums of squares J. Pure Appl. Algebra 192 95-194
[4]  
Rostalski P.(2003)GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi ACM Trans. Math. Softw. 29 165-817
[5]  
Parrilo P.A.(2001)Global optimization with polynomials and the problem of moments SIAM J. Optim. 11 796-649
[6]  
Morari M.(2002)Polynomials nonnegative on a grid and discrete optimization Trans. Am. Math. Soc. 354 631-360
[7]  
Gatermann K.(2002)Semidefinite programming vs LP relaxations for polynomial programming J. Math. Oper. Res. 27 347-765
[8]  
Parrilo P.A.(2006)A sum of squares approximation of nonnegative polynomials SIAM J. Optim. 16 751-92
[9]  
Henrion D.(2008)A semidefinite programming approach to the generalized problem of moments Math. Program. 112 65-3324
[10]  
Lasserre J.B.(2003)The method of moments in global optimization J. Math. Sci. 116 3303-171