Boundary value problems for a special Helfrich functional for surfaces of revolution: existence and asymptotic behaviour

被引:0
作者
Klaus Deckelnick
Marco Doemeland
Hans-Christoph Grunau
机构
[1] Otto-von-Guericke-Universität Magdeburg,Fakultät für Mathematik
[2] RWTH Aachen University,Math 111810
来源
Calculus of Variations and Partial Differential Equations | 2021年 / 60卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The central object of this article is (a special version of) the Helfrich functional which is the sum of the Willmore functional and the area functional times a weight factor ε≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \ge 0$$\end{document}. We collect several results concerning the existence of solutions to a Dirichlet boundary value problem for Helfrich surfaces of revolution and cover some specific regimes of boundary conditions and weight factors ε≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \ge 0$$\end{document}. These results are obtained with the help of different techniques like an energy method, gluing techniques and the use of the implicit function theorem close to Helfrich cylinders. In particular, concerning the regime of boundary values, where a catenoid exists as a global minimiser of the area functional, existence of minimisers of the Helfrich functional is established for all weight factors ε≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \ge 0$$\end{document}. For the singular limit of weight factors ε↗∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \varepsilon \nearrow \infty $$\end{document} they converge uniformly to the catenoid which minimises the surface area in the class of surfaces of revolution.
引用
收藏
相关论文
共 66 条
[1]  
Barrett JW(2017)Stable variational approximations of boundary value problems for Willmore flow with Gaussian curvature IMA J. Numer. Anal. 37 1657-1709
[2]  
Garcke H(2003)Existence of minimizing Willmore surfaces of prescribed genus Int. Math. Res. Not. 2003 553-576
[3]  
Nürnberg R(2013)Willmore surfaces of revolution with two prescribed boundary circles J. Geom. Anal. 23 283-302
[4]  
Bauer M(2014)Sufficient conditions for Willmore immersions in Ann. Glob. Anal. Geom. 45 129-146
[5]  
Kuwert E(2017) to be minimal surfaces and Erratum Interfaces Free Bound. 19 495-523
[6]  
Bergner M(1986)Rigidity and stability of spheres in the Helfrich model Am. J. Math. 108 525-570
[7]  
Dall’Acqua A(1970)Reduction for constrained variational problems and J. Theor. Biol. 26 61-76
[8]  
Fröhlich S(2013)The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell ESAIM Eur. Ser. Appl. Ind. Math COCV Control Optim. Calc. Var. 19 1014-1029
[9]  
Bergner M(2013)Global minimizers for axisymmetric multiphase membranes Calc. Var. Partial. Differ. Equ. 48 337-366
[10]  
Jakob R(2020)Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case Arch. Ration. Mech. Anal. 236 1593-1676