Canceling effects in higher-order Hardy–Sobolev inequalities

被引:0
|
作者
Andrea Cianchi
Norisuke Ioku
机构
[1] Università di Firenze,Dipartimento di Matematica e Informatica, “U.Dini”
[2] Ehime University,Graduate School of Science and Engineering
来源
Calculus of Variations and Partial Differential Equations | 2017年 / 56卷
关键词
46E35; 46E30;
D O I
暂无
中图分类号
学科分类号
摘要
A classical first-order Hardy–Sobolev inequality in Euclidean domains, involving weighted norms depending on powers of the distance function from their boundary, is known to hold for every, but one, value of the power. We show that, by contrast, the missing power is admissible in a suitable counterpart for higher-order Sobolev norms. Our result complements and extends contributions by Castro and Wang (Calc Var 39(3–4):525–531, 2010), and Castro et al. (Comptes Rendus Math Acad Sci Paris 349:765–767, 2011; J Eur Math Soc 15:145–155, 2013), where a surprising canceling phenomenon underling the relevant inequalities was discovered in the special case of functions with derivatives in L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}.
引用
收藏
相关论文
共 50 条