Rational curves and bounds on the Picard number of Fano manifolds

被引:0
作者
Carla Novelli
Gianluca Occhetta
机构
[1] Università di Milano,Dipartimento di Matematica “F. Enriques”
[2] Università di Pavia,Dipartimento di Matematica “F. Casorati”
[3] Università di Trento,Dipartimento di Matematica
来源
Geometriae Dedicata | 2010年 / 147卷
关键词
Fano manifolds; Rational curves; 14J45; 14E30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that Generalized Mukai Conjecture holds for Fano manifolds X of pseudoindex iX ≥ (dim X + 3)/3. We also give different proofs of the conjecture for Fano fourfolds and fivefolds.
引用
收藏
页码:207 / 217
页数:10
相关论文
共 16 条
[1]  
Andreatta M.(2004)Generalized Mukai conjecture for special Fano varieties Cent. Eur. J. Math. 2 272-293
[2]  
Chierici E.(2003)Sur une conjecture de Mukai Comment. Math. Helv. 78 601-626
[3]  
Occhetta G.(1981)Coréduction algébrique d’un espace analytique faiblement Kählérien compact Invent. Math. 63 187-223
[4]  
Bonavero L.(2004)Orbifolds, special varieties and classification theory: an appendix Ann. Inst. Fourier (Grenoble) 54 631-665
[5]  
Casagrande C.(2006)The number of vertices of a Fano polytope Ann. Inst. Fourier (Grenoble) 56 121-130
[6]  
Debarre O.(1992)Rational connectedness and boundedness of Fano manifolds J. Diff. Geom. 36 765-779
[7]  
Druel S.(1979)Projective manifolds with ample tangent bundles Ann. Math. (2) 110 593-606
[8]  
Campana F.(2006)A characterization of products of projective spaces Can. Math. Bull. 49 270-280
[9]  
Campana F.(1990)On a conjecture of Mukai Manuscripta Math. 68 135-141
[10]  
Casagrande C.(undefined)undefined undefined undefined undefined-undefined