共 34 条
- [21] Subordination for sequentially equicontinuous equibounded C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_0$$\end{document}-semigroups Journal of Evolution Equations, 2021, 21 (2) : 2665 - 2690
- [22] Harmonic SU(3)- and G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document}-Structures via Spinors Results in Mathematics, 2020, 75 (3)
- [23] Hyperbolic Laplace Operator and the Weinstein Equation in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^3}$$\end{document} Advances in Applied Clifford Algebras, 2014, 24 (1) : 109 - 124
- [24] Polyharmonic Maass forms for PSL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {PSL}(2,{\mathbb Z})$$\end{document} The Ramanujan Journal, 2016, 41 (1-3) : 191 - 232
- [25] An upper bound for third Hankel determinant of starlike functions connected with k-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k-$$\end{document}Fibonacci numbers Boletín de la Sociedad Matemática Mexicana, 2019, 25 (1) : 117 - 129
- [26] Some properties for certain subclasses of multivalent functions associated with the q-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q-$$\end{document}difference linear operator Afrika Matematika, 2021, 32 (5-6) : 773 - 787
- [27] Convolution properties for classes of bounded analytic functions with complex order defined by q-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q-$$\end{document}derivative operator Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 (2): : 1279 - 1288
- [28] Certain subclasses of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-pseudo bi-univalent functions with respect to symmetric points associated with the Gegenbauer polynomial Afrika Matematika, 2023, 34 (1)
- [29] Polyharmonic weak Maass forms of higher depth for SL2(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {SL}_2({\mathbb {Z}})$$\end{document} The Ramanujan Journal, 2020, 51 (1) : 19 - 42
- [30] On the behaviour of analytic representation of the multivalent α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-convex functionsOn the behaviour of analytic representationV. S. Masih et al. Indian Journal of Pure and Applied Mathematics, 2025, 56 (2) : 659 - 675