Global convergence of a modified conjugate gradient method

被引:0
作者
Xuesha Wu
机构
[1] Chongqing College of Electronic Engineering,College of General Education
来源
Journal of Inequalities and Applications | / 2014卷
关键词
unconstrained optimization; conjugate gradient method; sufficient descent condition; global convergence;
D O I
暂无
中图分类号
学科分类号
摘要
A modified conjugate gradient method to solve unconstrained optimization problems is proposed which satisfies the sufficient descent condition in the case of the strong Wolfe line search, and its global convergence property is established simply. The numerical results show that the proposed method is promising for the given test problems.
引用
收藏
相关论文
共 39 条
  • [1] Polak E(1969)Note sur la convergence de méthodes de directions conjuguées Rev. Fr. Inform. Rech. Oper 3 35-43
  • [2] Ribière G(1969)The conjugate gradient method in extreme problems USSR Comput. Math. Math. Phys 9 94-112
  • [3] Polak BT(1992)Efficient generalized conjugate gradient algorithms. Part 1: theory J. Optim. Theory Appl 69 129-137
  • [4] Liu Y(2005)A new conjugate gradient method with guaranteed descent and an efficient line search SIAM J. Optim 16 170-192
  • [5] Storey C(2006)A survey of nonlinear conjugate gradient methods Pac. J. Optim 2 35-58
  • [6] Hager WW(2006)A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence IMA J. Numer. Anal 26 629-640
  • [7] Zhang H(1997)A new conjugate gradient method and its global convergence properties Math. Program 78 375-391
  • [8] Hager WW(2013)Convergence properties of a class of nonlinear conjugate gradient methods Comput. Oper. Res 40 2656-2661
  • [9] Zhang H(2012)Global convergence of a modified Liu-Storey conjugate gradient method U.P.B. Sci. Bull., Ser. A 74 11-26
  • [10] Zhang L(2007)A new version of the Liu-Storey conjugate gradient method Appl. Math. Comput 189 302-313