Semisymmetric Graphs Defined by Finite-Dimensional Generalized Kac–Moody Algebras

被引:0
作者
Fuyuan Yang
Qiang Sun
Chao Zhang
机构
[1] Guizhou University,Department of Mathematics, School of Mathematics and Statistics
[2] Yangzhou University,School of Mathematical Science
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2022年 / 45卷
关键词
Cayley graph; Hamiltonian graph; Vertex transitivity; Lie algebra; Edge transitivity; 05C25 (primary); 05C45; 17B67 (secondary);
D O I
暂无
中图分类号
学科分类号
摘要
Let Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document} be a finite field with q not powers of 2 or 3. In this paper, we mainly clarify whether the Lie graph defined by a finite-dimensional generalized Kac–Moody algebra is Cayley graph or not. More precisely, we prove that the graph L(M1,3,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}(M_1,3,q)$$\end{document} is a Cayley graph on a group of dihedral type, neither L(M2,4,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}(M_2,4,q)$$\end{document} nor L(M3,6,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}(M_3,6,q)$$\end{document} is vertex transitive. Moreover, L(M1,3,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {L}}(M_1,3,q)$$\end{document} is a Hamiltonian graph. As an application, we construct an infinite family of semisymmetric (i.e., regular, edge-transitive and non-vertex-transitive graphs) graphs.
引用
收藏
页码:3293 / 3305
页数:12
相关论文
共 57 条
[1]  
Cara P(2014)A construction for infinite families of semisymmetric graphs revealing their full automorphism group J. Algebraic Comb. 39 967-988
[2]  
Rottey S(2020)Some semisymmetric graphs arising from finite vector spaces J. Algebra Appl. 19 2050216-34
[3]  
Van de Voorde G(2014)On the girth of the bipartite graph Discret. Math. 335 25-2392
[4]  
Chen HY(2016)On the conjecture for the girth of the bipartite graph Discret. Math. 339 2384-139
[5]  
Han H(2014)On the spectrum of Wenger graphs J. Comb. Theory Ser. B 107 132-455
[6]  
Lu ZP(1950)Self-dual configurations and regular graphs Bull. Am. Math. Soc. 56 413-131
[7]  
Cheng X(1964)The nonexistence of certain generalized polygons J. Algebra 1 114-232
[8]  
Chen W(1967)Regular line-symmetric graphs J. Comb. Theory 3 215-68
[9]  
Tang Y(2017)Proof of a conjecture on monomial graphs Finite Fields Appl. 43 42-71
[10]  
Cheng X(2012)Hamiltonian cycles in Cayley graphs whose order has few prime factors Ars Mathematica Contemporanea 5 27-559