q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients

被引:0
作者
T. Kim
机构
[1] Kynungpook National University,EECS
来源
Russian Journal of Mathematical Physics | 2008年 / 15卷
关键词
Generalize Twist; Nonlinear Math; Lerch Zeta Function; Gaussian Binomial Coefficient; Classical Stirling Number;
D O I
暂无
中图分类号
学科分类号
摘要
A purpose of this paper is to present a systemic study of some families of multiple q-Bernoulli numbers and polynomials by using the multivariate q-Volkenborn integral (= p-adic q-integral) on ℤp. Moreover, the study of these higher-order q-Bernoulli numbers and polynomials implies some interesting q-analogs of Stirling number identities.
引用
收藏
页码:51 / 57
页数:6
相关论文
共 38 条
  • [1] Cangul I N(2007)An Invariant J. Nonlinear Math. Phys. 14 8-14
  • [2] Kurt V(1948)-Adic Duke Math. J. 15 987-1000
  • [3] Simsek Y(1958)-Integral Associated with Duke Math. J. 25 355-364
  • [4] Pak HK(2004)-Euler Numbers and Polynomials Adv. Stud. Contemp. Math. 9 203-216
  • [5] Rim S-H(2006)-Bernoulli Numbers and Polynomials Adv. Stud. Contemp. Math. 12 213-223
  • [6] Carlitz L C(2006)Expansions of J. Nonlinear Math. Phys. 13 9-18
  • [7] Carlitz L C(2007)-Bernoulli Numbers J. Math. Anal. Appl. 329 1472-1481
  • [8] Cenkci M(2002)-adic Interpolation Functions and Kummer-Type Congruences for Russ. J. Math. Phys. 9 288-299
  • [9] Can M(2007)-Twisted Euler Numbers Adv. Stud. Contemp. Math. 15 133-138
  • [10] Kurt V(2008)Some Results on J. Math. Anal. Appl. 339 598-608