On higher moments of Fourier coefficients of holomorphic cusp forms II

被引:0
作者
Guangshi Lü
机构
[1] Shandong University,Department of Mathematics
来源
Monatshefte für Mathematik | 2013年 / 169卷
关键词
Fourier coefficients; Rankin–Selberg ; -function; Modularity; Primitive cusp forms; Symmetric power ; -function; 11F30; 11F11; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
Let Sk(Γ) be the space of holomorphic cusp forms of even integral weight k for the full modular group. Let λf(n), λg(n), λh(n) be the nth normalized Fourier coefficients of three distinct holomorphic primitive cusp forms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f (z) \in S_{k_1}(\Gamma), g(z) \in S_{k_2} (\Gamma), h(z) \in S_{k_3} (\Gamma)}$$\end{document} respectively. In this paper we are able to establish nontrivial estimates for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{n{\leq}x} \lambda_f(n)^5{\lambda_g}(n), \quad \sum_{n{\leq}x} \lambda_f(n) \lambda_g(n)\lambda_{h}(n)^j$$\end{document}, where 1 ≤ j ≤ 4.
引用
收藏
页码:409 / 422
页数:13
相关论文
共 46 条
[11]  
Ivić A.(1981)(2) and Am. J. Math. 103 777-815
[12]  
Hecke E.(1927)(3) Abh. Math. Sem. Univ. Hamburg 5 337-352
[13]  
Jacquet H.(2003)On sums of Fourier coefficients of cusp forms J. Am. Math. Soc. 16 139-183
[14]  
Piatetski-Shapiro I.I.(2002)Theorie der Eisensteinsche Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik Ann. Math. 155 837-893
[15]  
Shalika J.A.(2002)Rankin–Selberg convolutions Duke Math. J. 112 177-197
[16]  
Jacquet H.(2009)On Euler products and the classification of automorphic representations I Proc. Am. Math. Soc. 137 1961-1969
[17]  
Shalika J.A.(2009)On Euler products and the classification of automorphic forms II J. Number Theory 129 2790-2880
[18]  
Jacquet H.(2011)Asymptotische Formeln für die Fourier-koeffizienten ganzer Modulformen Can. J. Math. 63 634-647
[19]  
Shalika J.A.(1983)Functoriality for the exterior square of Math. Ann. 266 233-239
[20]  
Kloosterman H.D.(1982) and symmetric fourth of Ann. Mat. Pura Appl. 130 287-306