On higher moments of Fourier coefficients of holomorphic cusp forms II

被引:0
作者
Guangshi Lü
机构
[1] Shandong University,Department of Mathematics
来源
Monatshefte für Mathematik | 2013年 / 169卷
关键词
Fourier coefficients; Rankin–Selberg ; -function; Modularity; Primitive cusp forms; Symmetric power ; -function; 11F30; 11F11; 11F66;
D O I
暂无
中图分类号
学科分类号
摘要
Let Sk(Γ) be the space of holomorphic cusp forms of even integral weight k for the full modular group. Let λf(n), λg(n), λh(n) be the nth normalized Fourier coefficients of three distinct holomorphic primitive cusp forms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f (z) \in S_{k_1}(\Gamma), g(z) \in S_{k_2} (\Gamma), h(z) \in S_{k_3} (\Gamma)}$$\end{document} respectively. In this paper we are able to establish nontrivial estimates for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{n{\leq}x} \lambda_f(n)^5{\lambda_g}(n), \quad \sum_{n{\leq}x} \lambda_f(n) \lambda_g(n)\lambda_{h}(n)^j$$\end{document}, where 1 ≤ j ≤ 4.
引用
收藏
页码:409 / 422
页数:13
相关论文
共 46 条
  • [1] Cogdell J.(2004)On the complex moments of symmetric power IMRN 31 1561-1617
  • [2] Michel P.(1974)-functions at Inst. Hautes Etudes Sci. Pul. Math. 43 273-307
  • [3] Deligne P.(1932) = 1 J. Reine Angew. Math. 169 158-176
  • [4] Davenport H.(1999)La Conjecture de Weil J. Math. Sci. 95 2295-2316
  • [5] Fomenko O.M.(2005)On certain exponential sums Can. J. Math. 57 494-505
  • [6] Friedlander J.B.(1978)Fourier coefficients of parabolic forms and automorphic Ann. Sci. École Norm. Sup. 11 471-552
  • [7] Iwaniec H.(1989)-functions Enseign. Math. 35 375-382
  • [8] Gelbart S.(1927)Summation formulae for coefficients of Abh. Math. Sem. Univ. Hamburg 5 199-224
  • [9] Jacquet H.(1983)-functions Am. J. Math. 105 367-464
  • [10] Hafner J.L.(1981)A relation between automorphic representations of Am. J. Math. 103 499-558