Real and complex supersolvable line arrangements in the projective plane

被引:0
作者
Krishna Hanumanthu
Brian Harbourne
机构
[1] Chennai Mathematical Institute,Department of Mathematics
[2] University of Nebraska-Lincoln,undefined
来源
Journal of Algebraic Combinatorics | 2021年 / 54卷
关键词
Dirac–Motzkin conjecture; Homogeneous supersolvable line arrangements; Modular points; Double points;
D O I
暂无
中图分类号
学科分类号
摘要
If we regard a set of s lines in P2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb P}^2$$\end{document} over either the reals or the complex numbers as an algebraic plane curve, then it is an open problem to classify for all s those for which the number t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_2$$\end{document} of points of multiplicity 2 satisfies t2<⌊s/2⌋\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_2<\lfloor s/2\rfloor $$\end{document}. By the Sylvester–Gallai theorem, there are no nontrivial (i.e., not a pencil or a near pencil) real arrangements with t2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_2=0$$\end{document}, but there are complex arrangements with t2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_2=0$$\end{document} and it is an open problem to classify them. In this paper, we initiate a classification of an interesting class of line arrangements called the supersovable line arrangements and give a partial classification for them over the reals or the complex numbers. In particular, we show that a complex line arrangement which is nontrivial cannot have more than 4 modular points and we completely describe those with 3 or 4 modular points.
引用
收藏
页码:767 / 785
页数:18
相关论文
共 40 条
  • [1] Abe T(2020)On complex supersolvable line arrangements J. Algebra 552 38-51
  • [2] Dimca A(2016)On the geometry of real or complex supersolvable line arrangements J. Combin. Theory Ser. A 140 76-96
  • [3] Anzis B(2015)Bounded negativity and arrangements of lines Int. Math. Res. Not. IMRN 19 9456-9471
  • [4] Tohǎneanu ŞO(2019)Negative curves on symmetric blowups of the projective plane, resurgences and Waldschmidt constants Int. Math. Res. Not. IMRN 24 7459-7514
  • [5] Bauer T(2018)Line arrangements and configurations of points with an unexpected geometric property Compos. Math. 154 2150-2194
  • [6] Di Rocco S(2020)Unexpected curves arising from special line arrangements J. Algebraic Combin. 51 171-194
  • [7] Harbourne B(1951)Collinearity properties of sets of points Q. J. Math. 2 221-227
  • [8] Huizenga J(2015)Resurgences for ideals of special point configurations in J. Algebra 443 383-394
  • [9] Lundman A(2013) coming from hyperplane arrangements J. Algebra 393 24-29
  • [10] Pokora P(2013)Counterexamples to the Discrete Comput. Geom. 50 409-468