Approximate Isomorphisms in C*-Algebras

被引:0
作者
Choonkil Park
机构
[1] Hanyang University,Department of Mathematics
来源
Acta Applicandae Mathematicae | 2008年 / 102卷
关键词
-algebra; Lie ; -algebra; -algebra; Cauchy–Jensen functional equation; Approximate isomorphism; Hyers–Ulam–Rassias stability; Unitary group; 39B72; 46L05; 47B48;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is a survey on the Hyers–Ulam–Rassias stability of the following Cauchy–Jensen functional equation in C*-algebras: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2f\biggl(\frac{x+y}{2}+z\biggr)=f(x)+f(y)+2f(z).$$\end{document} The concept of Hyers–Ulam–Rassias stability originated from the Th.M. Rassias’ stability theorem (Rassias in Proc. Am. Math. Soc. 72:297–300, [1978]).
引用
收藏
页码:71 / 85
页数:14
相关论文
共 46 条
[1]  
Baak C.(2005)On the stability of Nonlinear Anal. TMA 63 42-48
[2]  
Moslehian M.S.(2003)-homomorphisms Taiwan. J. Math. 7 641-655
[3]  
Boo D.(1992)Generalized Jensen’s equations in Banach modules over a Abh. Math. Semin. Hamb. 62 59-64
[4]  
Oh S.(1991)-algebra and its unitary group Int. J. Math. Math. Sci. 14 431-434
[5]  
Park C.(1994)On stability of the quadratic mapping in normed spaces J. Math. Anal. Appl. 184 431-436
[6]  
Park J.(1941)On stability of additive mappings Proc. Natl. Acad. Sci. U.S. Am. 27 222-224
[7]  
Czerwik P.(1992)A generalization of the Hyers–Ulam–Rassias stability of approximately additive mappings Aequ. Math. 44 125-153
[8]  
Gajda Z.(1998)On the stability of the linear functional equation Proc. Am. Math. Soc. 126 425-430
[9]  
Găvruta P.(1996)Approximate homomorphisms Int. J. Math. Math. Sci. 19 219-228
[10]  
Hyers D.H.(1996)On the asymptoticity aspect of Hyers–Ulam stability of mappings J. Math. Anal. Appl. 204 221-226