Multivariate time series prediction of lane changing behavior using deep neural network

被引:0
作者
Jun Gao
Yi Lu Murphey
Honghui Zhu
机构
[1] Wuhan University of Technology,School of Logistics Engineering
[2] University of Michigan-Dearborn,Department of Electrical and Computer Engineering
来源
Applied Intelligence | 2018年 / 48卷
关键词
Multivariate time series; Lane change prediction; MTS-GCNN; Spectral clustering;
D O I
暂无
中图分类号
学科分类号
摘要
Many real world pattern classification problems involve the process and analysis of multiple variables in temporal domain. This type of problem is referred to as Multivariate Time Series (MTS) problem. It remains a challenging problem due to the nature of time series data: high dimensionality, large data size and updating continuously. In this paper, we use three types of physiological signals from the driver to predict lane changes before the event actually occurs. These are the electrocardiogram (ECG), galvanic skin response (GSR), and respiration rate (RR) and were determined, in prior studies, to best reflect a driver’s response to the driving environment. A novel Group-wise Convolutional Neural Network, MTS-GCNN model is proposed for MTS pattern classification. In our MTS-GCNN model, we present a new structure learning algorithm in training stage. The algorithm exploits the covariance structure over multiple time series to partition input volume into groups, then learns the MTS-GCNN structure explicitly by clustering input sequences with spectral clustering. Different from other feature-based classification approaches, our MTS-GCNN can select and extract the suitable internal structure to generate temporal and spatial features automatically by using convolution and down-sample operations. The experimental results showed that, in comparison to other state-of-the-art models, our MTS-GCNN performs significantly better in terms of prediction accuracy.
引用
收藏
页码:3523 / 3537
页数:14
相关论文
共 50 条
  • [21] Multivariate solar power time series forecasting using multilevel data fusion and deep neural networks
    Almaghrabi, Sarah
    Rana, Mashud
    Hamilton, Margaret
    Rahaman, Mohammad Saiedur
    INFORMATION FUSION, 2024, 104
  • [22] Do deep neural networks contribute to multivariate time series anomaly detection?
    Audibert, Julien
    Michiardi, Pietro
    Guyard, Frederic
    Marti, Sebastien
    Zuluaga, Maria A.
    PATTERN RECOGNITION, 2022, 132
  • [23] Graph correlated attention recurrent neural network for multivariate time series forecasting
    Geng, Xiulin
    He, Xiaoyu
    Xu, Lingyu
    Yu, Jie
    INFORMATION SCIENCES, 2022, 606 : 126 - 142
  • [24] GTAD: Graph and Temporal Neural Network for Multivariate Time Series Anomaly Detection
    Guan, Siwei
    Zhao, Binjie
    Dong, Zhekang
    Gao, Mingyu
    He, Zhiwei
    ENTROPY, 2022, 24 (06)
  • [25] A multivariate time series prediction model based on subspace echo state network
    Han, Min, 1600, Science Press (37): : 2268 - 2275
  • [26] A multivariate time series graph neural network for district heat load forecasting
    Wang, Zhijin
    Liu, Xiufeng
    Huang, Yaohui
    Zhang, Peisong
    Fu, Yonggang
    ENERGY, 2023, 278
  • [27] Temperature Prediction Using Multivariate Time Series Deep Learning in the Lining of an Electric Arc Furnace for Ferronickel Production
    Leon-Medina, Jersson X.
    Camacho, Jaiber
    Gutierrez-Osorio, Camilo
    Salomon, Julian Esteban
    Rueda, Bernardo
    Vargas, Whilmar
    Sofrony, Jorge
    Restrepo-Calle, Felipe
    Pedraza, Cesar
    Tibaduiza, Diego
    SENSORS, 2021, 21 (20)
  • [28] A Recurrent Neural Network based Generative Adversarial Network for Long Multivariate Time Series Forecasting
    Tang, Peiwang
    Zhang, Qinghua
    Zhang, Xianchao
    PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023, 2023, : 181 - 189
  • [29] Multivariate time series imputation for energy data using neural networks
    Bulte, Christopher
    Kleinebrahm, Max
    Yilmaz, Hasan Umitcan
    Gomez-Romero, Juan
    ENERGY AND AI, 2023, 13
  • [30] A novel artificial neural network improves multivariate feature extraction in predicting correlated multivariate time series
    Eskandarian, Parinaz
    Mohasefi, Jamshid Bagherzadeh
    Pirnejad, Habibollah
    Niazkhani, Zahra
    APPLIED SOFT COMPUTING, 2022, 128