Alterations in hepatic metabolism of S-amino acids were monitored over one week in male rats treated with a single dose of ethanol (3 g/kg, ip). Methionine and S-adenosylhomocysteine concentrations were increased rapidly, but S-adenosylmethionine, cysteine, and glutathione (GSH) decreased following ethanol administration. Activities of methionine adenosyltransferase, cystathionine γ-lyase and cystathionine β-synthase were all inhibited. γ-Glutamylcysteine synthetase activity was increased from t = 8 hr, but GSH level did not return to control for 24 hr. Hepatic hypotaurine and taurine levels were elevated immediately, but reduced below control in 18 hr. Changes in serum and urinary taurine levels were consistent with results observed in liver. Cysteine dioxygenase activity was increased rapidly, but declined from t = 24 hr. The results show that a single dose of ethanol induces profound changes in hepatic S-amino acid metabolism, some of which persist for several days. Ethanol not only inhibits the cysteine synthesis but suppresses the cysteine availability further by enhancing its irreversible catabolism to taurine, which would play a significant role in the depletion of hepatic GSH.