Equivariant Chern Classes of Orientable Toric Origami Manifolds

被引:0
|
作者
Xiong, Yueshan [1 ]
Zeng, Haozhi [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Equivariant Chern classes; Toric origami manifolds; Unitary structures; Spin structures; FUNDAMENTAL GROUP; COHOMOLOGY;
D O I
10.1007/s11401-024-0013-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A toric origami manifold, introduced by Cannas da Silva, Guillemin and Pires, is a generalization of a toric symplectic manifold. For a toric symplectic manifold, its equivariant Chern classes can be described in terms of the corresponding Delzant polytope and the stabilization of its tangent bundle splits as a direct sum of complex line bundles. But in general a toric origami manifold is not simply connected, so the algebraic topology of a toric origami manifold is more difficult than a toric symplectic manifold. In this paper they give an explicit formula of the equivariant Chern classes of an oriented toric origami manifold in terms of the corresponding origami template. Furthermore, they prove the stabilization of the tangent bundle of an oriented toric origami manifold also splits as a direct sum of complex line bundles.
引用
收藏
页码:221 / 234
页数:14
相关论文
共 50 条
  • [1] Equivariant Chern Classes of Orientable Toric Origami Manifolds
    Yueshan XIONG
    Haozhi ZENG
    Chinese Annals of Mathematics,Series B, 2024, (02) : 221 - 234
  • [2] THE TOPOLOGY OF TORIC ORIGAMI MANIFOLDS
    Holm, Tara S.
    Pires, Ana Rita
    MATHEMATICAL RESEARCH LETTERS, 2013, 20 (05) : 885 - 906
  • [3] Chern classes in equivariant bordism
    Schwede, Stefan
    FORUM OF MATHEMATICS SIGMA, 2024, 12
  • [4] Toric origami structures on quasitoric manifolds
    Ayzenberg, Anton A.
    Masuda, Mikiya
    Park, Seonjeong
    Zeng, Haozhi
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 288 (01) : 10 - 28
  • [5] Equivariant cohomology distinguishes toric manifolds
    Masuda, Mikiya
    ADVANCES IN MATHEMATICS, 2008, 218 (06) : 2005 - 2012
  • [6] Toric origami structures on quasitoric manifolds
    Anton A. Ayzenberg
    Mikiya Masuda
    Seonjeong Park
    Haozhi Zeng
    Proceedings of the Steklov Institute of Mathematics, 2015, 288 : 10 - 28
  • [7] Conjugation spaces and equivariant Chern classes
    Pitsch, Wolfgang
    Scherer, Jerome
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2013, 20 (01) : 77 - 90
  • [8] EQUIVARIANT CHERN CLASSES AND LOCALIZATION THEOREM
    Weber, Andrzej
    JOURNAL OF SINGULARITIES, 2012, 5 : 153 - 176
  • [9] CHERN CLASSES OF SINGULAR TORIC VARIETIES
    BARTHEL, G
    BRASSELET, JP
    FIESELER, KH
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (02): : 187 - 192
  • [10] COBORDISM CLASSES OF SQUARES OF ORIENTABLE MANIFOLDS
    ANDERSON, PG
    ANNALS OF MATHEMATICS, 1966, 83 (01) : 47 - &