Minty’s lemma and vector variational-like inequalities

被引:0
作者
M. Chinaie
T. Jabarootian
M. Rezaie
J. Zafarani
机构
[1] University of Isfahan,Department of Mathematics
[2] Islamic Azad University,Department of Mathematics
[3] Khomeiny Shahr Branch,undefined
来源
Journal of Global Optimization | 2008年 / 40卷
关键词
Fan’s KKM theorem; Minty’s Lemma; Vector variational-like inequality; Hausdorff metric; 47H04; 47H05; 49J40; 49J53;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider two vector versions of Minty’s Lemma and obtain existence theorems for three kinds of vector variational-like inequalities. The results presented in this paper are extension and improvement of the corresponding results of other authors.
引用
收藏
页码:463 / 473
页数:10
相关论文
共 27 条
[1]  
Chen G.Y.(1992)Existence of solutions for a vector variational inequality. An extension of Hartman-Stampacchia theorem J. Optim. Theory Appl. 74 445-456
[2]  
Chen G.Y.(1990)The vector complementarity problem and its equivalence with the weak minimal element in ordered spaces J. Math. Anal. Appl. 153 136-158
[3]  
Yang X.Q.(2005)Semicontinuous mapping in t. v. s. with applications to mixed vector variational-like inequalities J. Global Optim. 32 467-486
[4]  
Chiang Y.(1996)Existence theorems for vector variational inequalities Bull. Austral. Math. Soc. 54 473-481
[5]  
Daniilidis A.(2005)Generalized vector equilibrium problems for pseudomonotone bifunctions J. Optim. Theory Appl. 126 109-124
[6]  
Hadjisavvas N.(2003)Variational-like inequalities with generalized monotone mapping in Banach spaces J. Optim. Theory Appl. 118 327-338
[7]  
Fakhar M.(2005)On vector variational-like inequalities in reflexive Banach spaces J. Global Optim. 32 495-505
[8]  
Zafarani J.(2006)Generalized invariant monotonicity and invexity of nondifferentiable functions J. Global Optim. 36 537-564
[9]  
Fang Y.P.(2004)On generalized vector variational-like inequalities Nonlinear Anal. 59 879-889
[10]  
Huang N.J.(1997)On the generalized vector variational inequality problem J. Math. Anal. Appl. 206 42-58