An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds

被引:0
作者
Ali Feizmohammadi
Tony Liimatainen
Yi-Hsuan Lin
机构
[1] The Fields Institute for Research in Mathematical Sciences,Department of Mathematics and Statistics
[2] University of Helsinki,Department of Applied Mathematics
[3] National Yang Ming Chiao Tung University,undefined
来源
Annals of PDE | 2023年 / 9卷
关键词
Inverse problems; Boundary determination; Semilinear elliptic equation; Riemannian manifold; Conformally transversally anisotropic; Gaussian quasimodes; WKB construction;
D O I
暂无
中图分类号
学科分类号
摘要
Given a conformally transversally anisotropic manifold (M, g), we consider the semilinear elliptic equation (-Δg+V)u+qu2=0onM.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta _{g}+V)u+qu^2=0\quad \hbox { on}\ M. \end{aligned}$$\end{document}We show that an a priori unknown smooth function q can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equation. This extends the previously known results of the works Feizmohammadi and Oksanen (J Differ Equ 269(6):4683–4719, 2020), Lassas et al. (J Math Pures Appl 145:44–82, 2021). Our proof is based on over-differentiating the equation: We linearize the equation to orders higher than the order two of the nonlinearity qu2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qu^2$$\end{document}, and introduce non-vanishing boundary traces for the linearizations. We study interactions of two or more products of the so-called Gaussian quasimode solutions to the linearized equation. We develop an asymptotic calculus to solve Laplace equations, which have these interactions as source terms.
引用
收藏
相关论文
共 50 条
[31]   Some remarks for semilinear elliptic equations on Riemannian manifolds with nonnegative curvature [J].
Lu, Zhihao .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2025,
[32]   Kernel Methods for Bayesian Elliptic Inverse Problems on Manifolds [J].
Harlim, John ;
Sanz-Alonso, Daniel ;
Yang, Ruiyi .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (04) :1414-1445
[33]   On the mixed boundary value problem for semilinear elliptic equations [J].
Misur, Marin .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 179 :162-177
[34]   Properties of solutions to semilinear elliptic problem with Hardy potential [J].
Chern, Jann-Long ;
Hashizume, Masato ;
Hwang, Gyeongha .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (02) :1432-1464
[35]   Simultaneous recovery of piecewise analytic coefficients in a semilinear elliptic equation [J].
Harrach, Bastian ;
Lin, Yi-Hsuan .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 228
[36]   A semilinear elliptic equation in a thin network-shaped domain [J].
Kosugi, S .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2000, 52 (03) :673-697
[37]   DISJOINT DATA INVERSE PROBLEM ON MANIFOLDS WITH QUANTUM CHAOS BOUNDS [J].
Lassas, Matti ;
Nursultanov, Medet ;
Oksanen, Lauri ;
Ylinen, Lauri .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (06) :7748-7779
[38]   Solution of a semilinear elliptic equation with critical growth in R(2) [J].
Panda, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (04) :721-728
[39]   A Rectangular Finite Volume Element Method for a Semilinear Elliptic Equation [J].
Zhiguang Xiong ;
Yanping Chen .
Journal of Scientific Computing, 2008, 36 :177-191
[40]   Minimal solutions of a semilinear elliptic equation with a dynamical boundary condition [J].
Fila, Marek ;
Ishige, Kazuhiro ;
Kawakami, Tatsuki .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (06) :788-809