An Inverse Problem for a Semilinear Elliptic Equation on Conformally Transversally Anisotropic Manifolds

被引:0
作者
Ali Feizmohammadi
Tony Liimatainen
Yi-Hsuan Lin
机构
[1] The Fields Institute for Research in Mathematical Sciences,Department of Mathematics and Statistics
[2] University of Helsinki,Department of Applied Mathematics
[3] National Yang Ming Chiao Tung University,undefined
来源
Annals of PDE | 2023年 / 9卷
关键词
Inverse problems; Boundary determination; Semilinear elliptic equation; Riemannian manifold; Conformally transversally anisotropic; Gaussian quasimodes; WKB construction;
D O I
暂无
中图分类号
学科分类号
摘要
Given a conformally transversally anisotropic manifold (M, g), we consider the semilinear elliptic equation (-Δg+V)u+qu2=0onM.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta _{g}+V)u+qu^2=0\quad \hbox { on}\ M. \end{aligned}$$\end{document}We show that an a priori unknown smooth function q can be uniquely determined from the knowledge of the Dirichlet-to-Neumann map associated to the equation. This extends the previously known results of the works Feizmohammadi and Oksanen (J Differ Equ 269(6):4683–4719, 2020), Lassas et al. (J Math Pures Appl 145:44–82, 2021). Our proof is based on over-differentiating the equation: We linearize the equation to orders higher than the order two of the nonlinearity qu2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$qu^2$$\end{document}, and introduce non-vanishing boundary traces for the linearizations. We study interactions of two or more products of the so-called Gaussian quasimode solutions to the linearized equation. We develop an asymptotic calculus to solve Laplace equations, which have these interactions as source terms.
引用
收藏
相关论文
共 50 条
[21]   Nondegenerate solutions for constrained semilinear elliptic problems on Riemannian manifolds [J].
Ramos, Gustavo de Paula .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 28 (06)
[22]   Nondegenerate solutions for constrained semilinear elliptic problems on Riemannian manifolds [J].
Gustavo de Paula Ramos .
Nonlinear Differential Equations and Applications NoDEA, 2021, 28
[23]   Existence and multiplicity results for a semilinear elliptic problem [J].
Castro, Alfonso ;
Cossio, Jorge ;
Herron, Sigifredo ;
Velez, Carlos .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) :1493-1501
[24]   Approximate controllability and homogenization of a semilinear elliptic problem [J].
Conca, C ;
Osses, A ;
Paulin, JSJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 285 (01) :17-36
[25]   Variational approach to semilinear elliptic equation with nonlinear boundary [J].
Nowakowski, A. ;
Orpel, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (01) :237-247
[26]   Existence of solutions for singular critical semilinear elliptic equation [J].
Wang, Mengchao ;
Zhang, Qi .
APPLIED MATHEMATICS LETTERS, 2019, 94 :217-223
[27]   A remark on the uniqueness of the positive solution for a semilinear elliptic equation [J].
Damascelli, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (02) :211-216
[28]   Uniqueness results for inverse source problems for semilinear elliptic equations [J].
Liimatainen, Tony ;
Lin, Yi-Hsuan .
INVERSE PROBLEMS, 2024, 40 (04)
[29]   Singular solutions of semilinear elliptic equations with supercritical growth on Riemannian manifolds [J].
Shoichi Hasegawa .
Nonlinear Differential Equations and Applications NoDEA, 2024, 31
[30]   Singular solutions of semilinear elliptic equations with supercritical growth on Riemannian manifolds [J].
Hasegawa, Shoichi .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (03)