Real-time thinning algorithms for 2D and 3D images using GPU processors

被引:0
作者
Martin G. Wagner
机构
[1] University of Wisconsin,Department of Medical Physics
来源
Journal of Real-Time Image Processing | 2020年 / 17卷
关键词
Centerline; GPU Programming; Medial axis; Skeletonization; Thinning;
D O I
暂无
中图分类号
学科分类号
摘要
The skeletonization of binary images is a common task in many image processing and machine learning applications. Some of these applications require very fast image processing. We propose novel techniques for efficient 2D and 3D thinning of binary images using GPU processors. The algorithms use bit-encoded binary images to process multiple points simultaneously in each thread. The simpleness of a point is determined based on Boolean algebra using only bitwise logical operators. This avoids computationally expensive decoding and encoding steps and allows for additional parallelization. The 2D algorithm is evaluated using a data set of handwritten characters images. It required an average computation time of 3.53 ns for 32 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 32 pixels and 0.25 ms for 1024 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 1024 pixels. This is 52–18,380 times faster than a multi-threaded border-parallel algorithm. The 3D algorithm was evaluated based on clinical images of the human vasculature and required computation times of 0.27 ms for 128 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 128 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 128 voxels and 20.32 ms for 512 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 512 ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 512 voxels, which is 32–46 times faster than the compared border-sequential algorithm using the same GPU processor. The proposed techniques enable efficient real-time 2D and 3D skeletonization of binary images, which could improve the performance of many existing machine learning applications.
引用
收藏
页码:1255 / 1266
页数:11
相关论文
共 71 条
[1]  
Kahan S(1987)On the recognition of printed characters of any font and size IEEE Trans. Pattern Anal. Mach. Intell. 9 274-288
[2]  
Pavlidis T(2001)An overview of character recognition focused on off-line handwriting IEEE Trans. Syst. Man Cybern. C 31 216-233
[3]  
Baird HS(1983)Comparison of thinning algorithms on a parallel processor Image Vis. Comput. 1 115-132
[4]  
Arica N(1968)Automatic chromosome analysis Br. Med. Bull. 24 260-267
[5]  
Yarman-Vural FT(2016)4D interventional device reconstruction from biplane fluoroscopy Med. Phys. 43 1324-1334
[6]  
Hilditch CJ(2007)Binary fingerprint image thinning using template-based PCNNs IEEE Trans. Syst. Man Cybern. B 37 1407-1413
[7]  
Rutovitz D(1987)A thinning algorithm based on contours Comput. Vis. Graph. Image Process. 39 186-201
[8]  
Wagner M(1995)Skeletonization via distance maps and level sets Comput. Vis. Image Underst. 62 382-391
[9]  
Schafer S(1995)Hierarchic Voronoi skeletons Pattern Recognit. 28 343-359
[10]  
Strother C(1995)A skeletonization algorithm by maxima tracking on Euclidean distance transform Pattern Recognit. 28 331-341