Poisson-Lie Interpretation of Trigonometric Ruijsenaars Duality

被引:0
|
作者
L. Fehér
C. Klimčí k
机构
[1] MTA KFKI RMKI,Department of Theoretical Physics
[2] University of Szeged,Department of Theoretical Physics
[3] Institut de Mathématiques de Luminy,undefined
来源
关键词
Phase Space; Symplectic Form; Symplectic Manifold; Iwasawa Decomposition; Reduce Phase Space;
D O I
暂无
中图分类号
学科分类号
摘要
A geometric interpretation of the duality between two real forms of the complex trigonometric Ruijsenaars-Schneider system is presented. The phase spaces of the systems in duality are viewed as two different models of the same reduced phase space arising from a suitable symplectic reduction of the standard Heisenberg double of U(n). The collections of commuting Hamiltonians of the systems in duality are shown to descend from two families of ‘free’ Hamiltonians on the double which are dual to each other in a Poisson-Lie sense. Our results give rise to a major simplification of Ruijsenaars’ proof of the crucial symplectomorphism property of the duality map.
引用
收藏
页码:55 / 104
页数:49
相关论文
共 50 条
  • [1] Poisson-Lie Interpretation of Trigonometric Ruijs']jsenaars Duality
    Feher, L.
    Klimcik, C.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 301 (01) : 55 - 104
  • [2] Poisson-Lie T-duality
    Klimcik, C
    NUCLEAR PHYSICS B, 1996, : 116 - 121
  • [3] Poisson-Lie duality in the string effective action
    Bossard, A
    Mohammedi, N
    NUCLEAR PHYSICS B, 2001, 619 (1-3) : 128 - 154
  • [4] α′-Corrected Poisson-Lie T-Duality
    Hassler, Falk
    Rochais, Thomas
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2020, 68 (09):
  • [5] Poisson-Lie T-duality and supersymmetry
    Sfetsos, K
    NUCLEAR PHYSICS B, 1997, : 302 - 309
  • [6] SU(2) Poisson-Lie T duality
    Lledo, MA
    Varadarajan, VS
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 45 (03) : 247 - 257
  • [7] Poisson-Lie T-duality for quasitriangular Lie bialgebras
    Beggs, EJ
    Majid, S
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 220 (03) : 455 - 488
  • [8] Global Description of Action-Angle Duality for a Poisson-Lie Deformation of the Trigonometric BCn Sutherland System
    Feher, L.
    Marshall, I.
    ANNALES HENRI POINCARE, 2019, 20 (04): : 1217 - 1262
  • [9] POISSON-LIE T-DUALITY AND INTEGRABLE SYSTEMS
    Montani, H.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2008, 49 (01): : 71 - 82
  • [10] Quantum equivalence in Poisson-Lie T-duality
    Sfetsos, Konstadinos
    Siampos, Konstadinos
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (06):