On first-order periodic boundary value problems and distributional Henstock-Kurzweil integrals

被引:0
作者
Wei Liu
Tianqing An
Guoju Ye
机构
[1] Hohai University,Department of Mathematics
来源
Boundary Value Problems | / 2014卷
关键词
periodic boundary value problem; distributional Henstock-Kurzweil integral; distributional derivative; extremal solutions; upper and lower solutions; fixed point;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the study of existence and dependence of solutions of the first-order periodic boundary value problems involving the distributional Henstock-Kurzweil integral. The methods used are mainly the method of upper and lower solutions and a fixed point theorem.
引用
收藏
相关论文
共 24 条
[1]  
Lakshmikantham V(1983)Existence and monotone method for periodic solutions of first-order differential equations J. Math. Anal. Appl 91 237-243
[2]  
Leela S(1984)Remarks on first and second order periodic boundary value problems Nonlinear Anal 8 281-287
[3]  
Lakshmikantham V(2006)Existence and multiplicity results for periodic solutions of nonlinear difference equations J. Differ. Equ. Appl 12 677-695
[4]  
Leela S(2007)Periodic solutions of first order nonlinear difference equations Rend. Semin. Mat. (Torino) 65 17-33
[5]  
Bereanu C(2012)On periodic solutions for first order differential equations involving the distributional Henstock-Kurzweil integral Bull. Aust. Math. Soc 86 327-338
[6]  
Mawhin J(1990)The topology of the space of Denjoy integrable functions Bull. Aust. Math. Soc 42 517-524
[7]  
Bereanu C(2003)A full descriptive definition of the Henstock-Kurzweil integral in the Euclidean space Proc. Lond. Math. Soc 87 677-700
[8]  
Mawhin J(2008)The distributional Denjoy integral Real Anal. Exch 33 51-82
[9]  
Liu W(2011)Existence of solutions of the wave equation involving the distributional Henstock-Kurzweil integral Differ. Integral Equ 24 1063-1071
[10]  
Ye GJ(1997)A multidimensional analogue of the Denjoy-Perron-Henstock-Kurzweil integral Bull. Belg. Math. Soc. Simon Stevin 4 355-371