Extreme learning machine with fuzzy input and fuzzy output for fuzzy regression

被引:0
作者
Hai-tao Liu
Jing Wang
Yu-lin He
Rana Aamir Raza Ashfaq
机构
[1] Xingtai University,College of Mathematics and Information Technology
[2] Hebei Institute of Physical Education,Modern Education Technology Center
[3] Shenzhen University,Big Data Institute, College of Computer Science and Software Engineering
[4] Bahauddin Zakariya University,Department of Computer Science
来源
Neural Computing and Applications | 2017年 / 28卷
关键词
Extreme learning machine; Fuzzy input and fuzzy output; Fuzzy linear regression; Triangular fuzzy number;
D O I
暂无
中图分类号
学科分类号
摘要
It is practically and theoretically significant to approximate and simulate a system with fuzzy inputs and fuzzy outputs. This paper proposes a extreme learning machine (ELM)-based fuzzy regression model (FRELM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm FR}}_{{{\rm ELM}}}$$\end{document}) in which both inputs and outputs are triangular fuzzy numbers. Algorithm for training FRELM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm FR}}_{{{\rm ELM}}}$$\end{document} is designed, and its computational complexity is analyzed. Furthermore, the convergence and error estimation for FRELM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm FR}}_{{{\rm ELM}}}$$\end{document} are discussed. Numerical simulations show that the proposed FRELM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\rm FR}}_{{{\rm ELM}}}$$\end{document} can effectively approximate a fuzzy input and fuzzy output system.
引用
收藏
页码:3465 / 3476
页数:11
相关论文
共 63 条
[1]  
Arabpour AR(2008)Estimating the parameters of a fuzzy linear regression model Iran J Fuzzy Syst 5 1-19
[2]  
Tata M(2008)Fuzzy regression using least absolute deviation estimators Soft Comput 12 257-263
[3]  
Choi SH(1988)Fuzzy least squares Inf Sci 46 141-157
[4]  
Buckley JJ(1997)Extended fuzzy linear models and least squares estimates Comput Math Appl 33 15-32
[5]  
Diamond P(2003)Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data Comput Stat Data Anal 42 47-72
[6]  
Diamond P(2012)A new operation on triangular fuzzy number for solving fuzzy linear programming problem Appl Math Sci 6 525-532
[7]  
Körner R(2009)A goal programming approach to fuzzy linear regression with non-fuzzy input and fuzzy output data Asia–Pac J Oper Res 26 587-604
[8]  
D’Urso P(2010)Fuzzy linear regression model with crisp coefficients: a goal programming approach Iran J Fuzzy Syst 7 19-39
[9]  
Gani AN(2005)A simple method for computation of fuzzy linear regression Eur J Oper Res 166 172-184
[10]  
Hassanpour H(2001)Fuzzy linear regression analysis for fuzzy input–output data using shape-preserving operations Fuzzy Sets Syst 122 513-526