On the Maximum Number of Maximum Independent Sets

被引:0
|
作者
E. Mohr
D. Rautenbach
机构
[1] Universität Ulm,Institut für Optimierung und Operations Research
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Turán graph; Tree; Independence number; Maximum independent set; Fibonacci number;
D O I
暂无
中图分类号
学科分类号
摘要
We give a very short and simple proof of Zykov’s generalization of Turán’s theorem, which implies that the number of maximum independent sets of a graph of order n and independence number α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} with α<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha <n$$\end{document} is at most nαnmodαnαα-(nmodα)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\lceil \frac{n}{\alpha }\right\rceil ^{n\,\mathrm{mod}\,\alpha } \left\lfloor \frac{n}{\alpha }\right\rfloor ^{\alpha -(n\,\mathrm{mod}\,\alpha )}$$\end{document}. Generalizing a result of Zito, we show that the number of maximum independent sets of a tree of order n and independence number α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is at most 2n-α-1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{n-\alpha -1}+1$$\end{document}, if 2α=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\alpha =n$$\end{document}, and, 2n-α-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{n-\alpha -1}$$\end{document}, if 2α>n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\alpha >n$$\end{document}, and we also characterize the extremal graphs. Finally, we show that the number of maximum independent sets of a subcubic tree of order n and independence number α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is at most 1+522n-3α+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{1+\sqrt{5}}{2}\right) ^{2n-3\alpha +1}$$\end{document}, and we provide more precise results for extremal values of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}.
引用
收藏
页码:1729 / 1740
页数:11
相关论文
共 50 条
  • [1] On the Maximum Number of Maximum Independent Sets
    Mohr, E.
    Rautenbach, D.
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1729 - 1740
  • [2] On the Maximum Number of Maximum Independent Sets of Bipartite Graphs
    Sun, Wanting
    Li, Shuchao
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (04)
  • [3] ON THE NUMBER OF MAXIMUM INDEPENDENT SETS OF GRAPHS
    Derikvand, T.
    Oboudi, M. R.
    TRANSACTIONS ON COMBINATORICS, 2014, 3 (01) : 29 - 36
  • [4] On the maximum number of maximum independent sets in connected graphs
    Mohr, Elena
    Rautenbach, Dieter
    JOURNAL OF GRAPH THEORY, 2021, 96 (04) : 510 - 521
  • [5] The number of maximum independent sets in graphs
    Jou, MJ
    Chang, GJ
    TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (04): : 685 - 695
  • [6] The maximum number of maximum generalized 4-independent sets in trees
    Li, Pingshan
    Xu, Min
    JOURNAL OF GRAPH THEORY, 2024, 107 (02) : 359 - 380
  • [7] On the maximum number of minimum dominating sets in forests
    Alvarado, J. D.
    Dantas, S.
    Mohr, E.
    Rautenbach, D.
    DISCRETE MATHEMATICS, 2019, 342 (04) : 934 - 942
  • [8] Trees with a given number of leaves and the maximal number of maximum independent sets
    Taletskii, Dmitriy S.
    Malyshev, Dmitriy S.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2021, 31 (02): : 135 - 144
  • [9] The maximum number of maximum dissociation sets in trees
    Tu, Jianhua
    Zhang, Zhipeng
    Shi, Yongtang
    JOURNAL OF GRAPH THEORY, 2021, 96 (04) : 472 - 489
  • [10] An Extension of the Win Theorem: Counting the Number of Maximum Independent Sets
    Wanpeng Lei
    Liming Xiong
    Junfeng Du
    Jun Yin
    Chinese Annals of Mathematics, Series B, 2019, 40 : 411 - 428