Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin

被引:0
|
作者
Enkhchimeg Vanjildorj
Seo Young Song
Zhi Hong Yang
Jae Eul Choi
Yoo Sun Noh
Suhyoung Park
Woo Jin Lim
Kye Man Cho
Han Dae Yun
Yong Pyo Lim
机构
[1] Chungnam National University,Department of Horticulture
[2] Chungnam National University,Division of Plant Science and Resources
[3] Seoul National University,Department of Biological Sciences
[4] NHRI,Vegetable Division
[5] RDA,Division of Applied Life Science (BK21 Program), Research Institute of Life Science
[6] Gyeongsang National University,Department of Food Science
[7] Jinju National University,undefined
来源
Plant Cell Reports | 2009年 / 28卷
关键词
L. ssp. ; inbred line; Kenshin; -mediated transformation; Soft rot disease tolerance; Autoinducer inactivation; Potato proteinase inhibitor II; IISP-; fusion gene;
D O I
暂无
中图分类号
学科分类号
摘要
We developed a transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin, with high tolerance to soft rot disease. Tolerance was conferred by expression of N-acyl-homoserine lactonase (AHL-lactonase) in Chinese cabbage through an efficient Agrobacterium-mediated transformation method. To synthesize and express the AHL-lactonase in Chinese cabbage, the plant was transformed with the aii gene (AHL-lactonase gene from Bacillus sp. GH02) fused to the PinII signal peptide (protease inhibitor II from potato). Five transgenic lines were selected by growth on hygromycin-containing medium (3.7% transformation efficiency). Southern blot analysis showed that the transgene was stably integrated into the genome. Among these five transgenic lines, single copy number integrations were observed in four lines and a double copy number integration was observed in one transgenic line. Northern blot analysis confirmed that pinIISP-aii fusion gene was expressed in all the transgenic lines. Soft rot disease tolerance was evaluated at tissue and seedling stage. Transgenic plants showed a significantly enhanced tolerance (2–3-fold) to soft rot disease compared to wild-type plants. Thus, expression of the fusion gene pinIISP-aii reduces susceptibility to soft rot disease in Chinese cabbage. We conclude that the recombinant AHL-lactonase, encoded by aii, can effectively quench bacterial quorum-sensing and prevent bacterial population density-dependent infections. To the best of our knowledge, the present study is the first to demonstrate the transformation of Chinese cabbage inbred line Kenshin, and the first to describe the effect of the fusion gene pinIISP-aii on enhancement of soft rot disease tolerance.
引用
收藏
页码:1581 / 1591
页数:10
相关论文
共 50 条
  • [21] Antioxidant capacities and polyphenolics of Chinese cabbage (Brassica rapa L. ssp Pekinensis) leaves
    Seong, Gi-Un
    Hwang, In-Wook
    Chung, Shin-Kyo
    FOOD CHEMISTRY, 2016, 199 : 612 - 618
  • [22] High-throughput sequencing discovery of conserved and novel microRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis)
    Fengde Wang
    Libin Li
    Lifeng Liu
    Huayin Li
    Yihui Zhang
    Yingyin Yao
    Zhongfu Ni
    Jianwei Gao
    Molecular Genetics and Genomics, 2012, 287 : 555 - 563
  • [23] Genome-wide identification and characterization of the OFP gene family in Chinese cabbage (Brassica rapa L. ssp. pekinensis)
    Wang, Ruihua
    Han, Taili
    Sun, Jifeng
    Xu, Ligong
    Fan, Jingjing
    Cao, Hui
    Liu, Chunxiang
    PEERJ, 2021, 9
  • [24] Identification of a new allele, BrPL, regulating the purple leaf trait in Chinese cabbage ( Brassica rapa L. ssp. pekinensis) )
    Xiao, Shixiong
    Wei, Xiaochun
    Zhao, Yanyan
    Yang, Shuangjuan
    Su, Henan
    Zhang, Wenjing
    Wang, Zhiyong
    Wei, Fang
    Tian, Baoming
    Yang, Haohui
    Yuan, Yuxiang
    Zhang, Xiaowei
    SCIENTIA HORTICULTURAE, 2024, 338
  • [25] Mitotic pollen abnormalities are linked to Ogura cytoplasmic male sterility in Chinese cabbage (Brassica rapa L. ssp. pekinensis)
    Wei, Xiaochun
    Zhang, Yuanlin
    Zhao, Yanyan
    Chen, Weiwei
    Nath, Ujjal Kumar
    Yang, Shuangjuan
    Su, Henan
    Wang, Zhiyong
    Zhang, Wenjing
    Tian, Baoming
    Wei, Fang
    Yuan, Yuxiang
    Zhang, Xiaowei
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2025, 24 (03) : 1092 - 1107
  • [26] Transcriptomic, metabolomic, and physiological analysis of two varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) that differ in their storabilit
    Zhao, Keyan
    Zhu, Xiaoqian
    Yuan, Shuzhi
    Xu, Xiangbin
    Shi, Junyan
    Zuo, Jinhua
    Yue, Xiaozhen
    Su, Tongbing
    Wang, Qing
    POSTHARVEST BIOLOGY AND TECHNOLOGY, 2024, 210
  • [27] Mapping quantitative trait loci for yield-related traits in Chinese cabbage (Brassica rapa L. ssp. pekinensis)
    Yang Liu
    Yun Zhang
    Jiying Xing
    Zhiyong Liu
    Hui Feng
    Euphytica, 2013, 193 : 221 - 234
  • [28] The SAP function in pistil development was proved by two allelic mutations in Chinese cabbage (Brassica rapa L. ssp. pekinensis)
    Huang, Shengnan
    Liu, Wenjie
    Xu, Junjie
    Liu, Zhiyong
    Li, Chengyu
    Feng, Hui
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [29] Nutrient uptake, growth, and physiology of Chinese cabbage (Brassica rapa L. ssp. pekinensis) varieties under NaCl stress
    Li, Xiaofeng
    Ayub, Muhammad Ashar
    Fox, John -Paul
    Shen, Shuxing
    Rossi, Lorenzo
    SOIL & ENVIRONMENT, 2024, 43 (01) : 1 - 13
  • [30] Transcriptome Analysis Revealed Hub Genes Related to Tipburn Resistance in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
    Bi, Yaning
    Zhang, Wenjing
    Yuan, Yuxiang
    Feng, Jianqi
    Wang, Peiyun
    Ding, Cong
    Zhao, Yanyan
    Li, Lin
    Su, Henan
    Tian, Baoming
    Wei, Fang
    Wei, Xiaochun
    Zhang, Xiaowei
    PLANTS-BASEL, 2025, 14 (04):