Morse theory for a fourth order elliptic equation with exponential nonlinearity

被引:0
作者
Laura Abatangelo
Alessandro Portaluri
机构
[1] University of Milano-Bicocca,
[2] University of Salento,undefined
来源
Nonlinear Differential Equations and Applications NoDEA | 2011年 / 18卷
关键词
35B33; 53A30; 53C21; 58E05; Scalar field equations; Geometric PDE’s; Morse Theory; Leray-Schauder degree;
D O I
暂无
中图分类号
学科分类号
摘要
Given a Hilbert space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(\mathcal H,\langle\cdot,\cdot\rangle)}$$\end{document}, and interval \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Lambda\subset(0,+\infty)}$$\end{document} and a map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K\in C^2(\mathcal H,\mathbb R)}$$\end{document} whose gradient is a compact mapping, we consider the family of functionals of the type: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I(\lambda,u)=\dfrac12\langle u,u\rangle-\lambda K(u),\quad (\lambda,u)\in\Lambda\times\mathcal H.$$\end{document}As already observed by many authors, for the functionals we are dealing with the (PS) condition may fail under just this assumptions. Nevertheless, by using a recent deformation Lemma proven by Lucia (Topol Methods Nonlinear Anal 30(1):113–138, 2007), we prove a Poincaré–Hopf type theorem. Moreover by using this result, together with some quantitative results about the formal set of barycenters, we are able to establish a direct and geometrically clear degree counting formula for a fourth order nonlinear scalar field equation on a bounded and smooth C∞ region of the four dimensional Euclidean space in the flavor of (Malchiodi in Adv Differ Equ 13:1109–1129, 2008). We remark that this formula has been proven with complete different methods in (Lin and Wei Preprint, 2007) by using blow-up type estimates.
引用
收藏
页码:27 / 43
页数:16
相关论文
共 14 条
  • [1] David R. Adams(1988)A sharp inequality of J. Moser for higher order derivatives Ann. Math. 128 385-398
  • [2] Bahri A.(1988)On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain Commun. Pure Appl. Math. 41 253-294
  • [3] Coron J.M.(2008)Existence of conformal metrics with constant Ann. Math. (2) 168 813-858
  • [4] Djadli Z.(2007)-curvature Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 599-630
  • [5] Malchiodi A.(2003)Sharp estimates for bubbling solutions of a fourth order mean field equation Commun. Pure Appl. Math. 56 784-809
  • [6] Lin C.(2005)Locating the peaks of solutions via the maximum principle. II. A local version of the method of moving planes C.R. Acad. Sci. Paris, Ser. I 341 287-291
  • [7] Wei J.(2006)A mountain pass theorem without Palais–Smale condition Calc. Var 26 313-330
  • [8] Lin C.(2007)A blowing-up branch of solutions for a mean field equation Topol. Methods Nonlinear Anal. 30 113-138
  • [9] Wei J.(2008)A deformation Lemma with an application to a mean field equation Discrete Contin. Dyn. Syst. 21 277-294
  • [10] Lucia M.(2008)Topological methods for an elliptic equation with exponential nonlinearities Adv. Differ. Equ. 13 1109-1129