Goal-oriented explicit residual-type error estimates in XFEM

被引:0
作者
Marcus Rüter
Tymofiy Gerasimov
Erwin Stein
机构
[1] University of California,Department of Civil and Environmental Engineering
[2] Leibniz Universität Hannover,Institute of Continuum Mechanics
[3] Leibniz Universität Hannover,Institute of Mechanics and Computational Mechanics
来源
Computational Mechanics | 2013年 / 52卷
关键词
Goal-oriented a posteriori error estimation; Explicit residual-type error estimation; Duality; XFEM; FEM; LEFM;
D O I
暂无
中图分类号
学科分类号
摘要
A goal-oriented a posteriori error estimator is derived to control the error obtained while approximately evaluating a quantity of engineering interest, represented in terms of a given linear or nonlinear functional, using extended finite elements of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q1$$\end{document} type. The same approximation method is used to solve the dual problem as required for the a posteriori error analysis. It is shown that for both problems to be solved numerically the same singular enrichment functions can be used. The goal-oriented error estimator presented can be classified as explicit residual type, i.e. the residuals of the approximations are used directly to compute upper bounds on the error of the quantity of interest. This approach therefore extends the explicit residual-type error estimator for classical energy norm error control as recently presented in Gerasimov et al. (Int J Numer Meth Eng 90:1118–1155, 2012a). Without loss of generality, the a posteriori error estimator is applied to the model problem of linear elastic fracture mechanics. Thus, emphasis is placed on the fracture criterion, here the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J$$\end{document}-integral, as the chosen quantity of interest. Finally, various illustrative numerical examples are presented where, on the one hand, the error estimator is compared to its finite element counterpart and, on the other hand, improved enrichment functions, as introduced in Gerasimov et al. (2012b), are discussed.
引用
收藏
页码:361 / 376
页数:15
相关论文
共 54 条
  • [1] Babuška I(1987)A feedback finite element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator Comput Methods Appl Mech Eng 61 1-40
  • [2] Miller A(1978)A-posteriori error estimates for the finite element method Int J Numer Meth Eng 12 1597-1615
  • [3] Babuška I(1978)Error estimates for adaptive finite element computations SIAM J Numer Anal 15 736-754
  • [4] Rheinboldt WC(1996)A feed-back approach to error control in finite element methods: Basic analysis and examples East-West J Numer Math 4 237-264
  • [5] Babuška I(1999)Elastic crack growth in finite elements with minimal remeshing Int J Numer Meth Eng 45 601-620
  • [6] Rheinboldt WC(2007)Derivative recovery and a posteriori error estimate for extended finite elements Comput Methods Appl Mech Eng 196 3381-3399
  • [7] Becker R(1967)Crack propagation in continuous media J Appl Math Mech 31 503-512
  • [8] Rannacher R(2008)A posteriori error estimation for extended finite elements by an extended global recovery Int J Numer Meth Engng 76 1123-1138
  • [9] Belytschko T(1995)Introduction to adaptive methods for differential equations Acta Numer 4 106-158
  • [10] Black T(1951)The force on an elastic singularity Philos Trans Roy Soc Lond A 244 87-112