Numerical differentiation by radial basis functions approximation

被引:0
作者
T. Wei
Y. C. Hon
机构
[1] Lanzhou University,School of Mathematics and Statistics
[2] City University of Hong Kong,Department of Mathematics
来源
Advances in Computational Mathematics | 2007年 / 27卷
关键词
numerical differentiation; radial basis functions; Tikhonov regularization; 65D25; 45D05; 35R25;
D O I
暂无
中图分类号
学科分类号
摘要
Based on radial basis functions approximation, we develop in this paper a new com-putational algorithm for numerical differentiation. Under an a priori and an a posteriori choice rules for the regularization parameter, we also give a proof on the convergence error estimate in reconstructing the unknown partial derivatives from scattered noisy data in multi-dimension. Numerical examples verify that the proposed regularization strategy with the a posteriori choice rule is effective and stable to solve the numerical differential problem.
引用
收藏
页码:247 / 272
页数:25
相关论文
共 29 条
[1]  
Anderssen R.S.(1999)For numerical differentiation, dimensionality can be a blessing! Math. Comput. 68 1121-1141
[2]  
Hegland M.(1971)Numerical differentiation and regularization SIAM J. Numer. Anal. 8 254-265
[3]  
Cullum J.(1978)Sur l'erreur d'interpolation des fonctions de plusieurs variables par les RAIRO Anal. Numér. 12 325-334
[4]  
Duchon J.(1991)-splines Am. Math. Mon. 98 847-850
[5]  
Groetsch C.W.(1999)Differentiation of approximately specified functions SIAM J. Appl. Math. 59 1012-1027
[6]  
Hanke M.(2001)Error analysis of an equation error method for the identification of the diffusion coefficient in a quasi-linear parabolic differential equation Am. Math. Mon. 108 512-521
[7]  
Scherzer O.(1999)Inverse problems light: numerical differentiation Appl. Math. Comput. 102 1-24
[8]  
Hanke M.(1998)Radial basis function approximations as smoothing splines J. Approx. Theory 92 245-266
[9]  
Scherzer O.(2001)On power functions and error estimates for radial basis function interpolation Approx. Theory its Appl. (N.S.) 17 90-104
[10]  
Hickernell F.J.(1990)The embedding theory of native spaces II, Math. Comput. 54 211-230