Semi-classical Analysis Around Local Maxima and Saddle Points for Degenerate Nonlinear Choquard Equations

被引:0
作者
Silvia Cingolani
Kazunaga Tanaka
机构
[1] Università degli Studi di Bari Aldo Moro,Dipartimento di Matematica
[2] Waseda University,Department of Mathematics, School of Science and Engineering
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
Nonlinear Choquard equation; Semi-classical states; Non-local nonlinearities; Deformation argument; 35Q55; 35Q40; 35J20; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
We study existence of semi-classical states for the nonlinear Choquard equation: -ε2Δv+V(x)v=1εα(Iα∗F(v))f(v)inRN,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\varepsilon ^2\Delta v+ V(x)v = {1\over \varepsilon ^\alpha }(I_\alpha *F(v))f(v) \quad \text {in}\ {\mathbb {R}}^N, \end{aligned}$$\end{document}where N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}, α∈(0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,N)$$\end{document}, Iα(x)=Aα/|x|N-α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_\alpha (x)=A_\alpha /|{x}|^{N-\alpha }$$\end{document} is the Riesz potential, F∈C1(R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F\in C^1({\mathbb {R}},{\mathbb {R}})$$\end{document}, F′(s)=f(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F'(s)=f(s)$$\end{document} and ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document} is a small parameter. We develop a new variational approach, in which our deformation flow is generated through a flow in an augmented space to get a suitable compactness property and to reflect the properties of the potential. Furthermore our flow keeps the size of the tails of the function small and it enables us to find a critical point without introducing a penalization term. We show the existence of a family of solutions concentrating to a local maximum or a saddle point of V(x)∈CN(RN,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V(x)\in C^N({\mathbb {R}}^N,{\mathbb {R}})$$\end{document} under general conditions on F(s). Our results extend the results by Moroz and Van Schaftingen (Calc Var Partial Differ Equ 52:199–235, 2015) for local minima (see also Cingolani and Tanaka (Rev Mat Iberoam 35(6):1885–1924, 2019)) and Wei and Winter (J Math Phys 50:012905, 2009) for non-degenerate critical points of the potential.
引用
收藏
相关论文
共 112 条
[1]  
Alves O(2017)Singularly perturbed critical Choquard equations J. Differential Equations 263 3943-3988
[2]  
Gao F(1997)Semiclassical states of nonlinear Schrödinger equations Arch. Rational Mech. Anal. 140 285-300
[3]  
Squassina M(2001)Multiplicity results for some nonlinear Schrödinger equations with potentials Arch. Ration. Mech. Anal. 159 253-271
[4]  
Yang M(2020)Normalized solutions for a class of nonlinear Choquard equations SN Partial Differ. Equ. Appl. 1 1-25
[5]  
Ambrosetti A(1983)Nonlinear scalar field equations. I. Existence of a ground state Arch. Rational Mech. Anal. 82 313-345
[6]  
Badiale M(2015)Semi-classical standing waves for nonlinear Schrödinger systems Calc. Var. Partial Differential Equations 54 2287-2340
[7]  
Cingolani S(2007)Standing waves for nonlinear Schrödinger equations with a general nonlinearity Arch. Ration. Mech. Anal. 185 185-200
[8]  
Ambrosetti A(2013)Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential J. Euro Math. Soc. 15 1859-1899
[9]  
Malchiodi A(2014)Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations Memoir Amer. Math. Soc. 229 1-87
[10]  
Secchi S(2014)Multi-bump positive solutions for a nonlinear elliptic problem in expanding tubular domains Calc. Var. Partial Differential Equations 50 365-397