Congruences for odd class numbers of quadratic fields with odd discriminant

被引:0
作者
Jigu Kim
Yoshinori Mizuno
机构
[1] Ewha Womans University,Institute of Mathematical Sciences
[2] Tokushima University,Graduate School of Technology Industrial and Social Sciences
来源
The Ramanujan Journal | 2023年 / 60卷
关键词
Class numbers; Quadratic fields; Hirzebruch sums; 11R29; 11A55; 11F20;
D O I
暂无
中图分类号
学科分类号
摘要
For any distinct two primes p1≡p2≡3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1\equiv p_2\equiv 3$$\end{document}(mod4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\text {mod }4)$$\end{document}, let h(-p1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(-p_1)$$\end{document}, h(-p2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(-p_2)$$\end{document} and h(p1p2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(p_1p_2)$$\end{document} be the class numbers of the quadratic fields Q(-p1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}(\sqrt{-p_1})$$\end{document}, Q(-p2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}(\sqrt{-p_2})$$\end{document} and Q(p1p2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}(\sqrt{p_1p_2})$$\end{document}, respectively. Let ωp1p2:=(1+p1p2)/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{p_1p_2}:=(1+\sqrt{p_1p_2})/2$$\end{document} and let Ψ(ωp1p2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPsi (\omega _{p_1p_2})$$\end{document} be the Hirzebruch sum of ωp1p2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _{p_1p_2}$$\end{document}. We show that h(-p1)h(-p2)≡h(p1p2)Ψ(ωp1p2)/n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h(-p_1)h(-p_2)\equiv h(p_1p_2)\varPsi (\omega _{p_1p_2})/n$$\end{document}(mod8)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\text {mod }8)$$\end{document}, where n=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=6$$\end{document} (respectively, n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document}) if minp1,p2>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$min {p1, p2} > 3$$\end{document} (respectively, otherwise). We also consider the real quadratic order with conductor 2 in Q(p1p2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}(\sqrt{p_1p_2})$$\end{document}.
引用
收藏
页码:939 / 963
页数:24
相关论文
共 18 条
[1]  
Bosma W(1996)On the computation of quadratic 2-class groups J. Théor. Nr. Bordx. 8 283-313
[2]  
Stevenhagen P(2019)Some congruences connecting quadratic class numbers with continued fractions Acta Arith. 191 309-340
[3]  
Cheng W(2015)Proof of a conjecture of Guy on class numbers Int. J. Number Theory 11 1345-1355
[4]  
Guo X(1973)Hilbert modular surfaces L’Enseignement Math. 19 183-281
[5]  
Chua L(2020)Genus character J. Lond. Math. Soc. 102 69-98
[6]  
Gunby B(1976)-functions of quadratic orders and class numbers Acta Arith. 28 419-428
[7]  
Park S(1991)Über einfache periodische Kettenbrüche und Vermutungen von P. Chowla und S. Chowla Chin. Sci. Bull. 36 1145-1147
[8]  
Yuan A(2021)Hirzebruch sum and class number of the quadratic fields J. Number Theory 227 352-370
[9]  
Hirzebruch F(2015)Congruences relating class numbers of quadratic orders and Zagier’s sums J. Number Theory 147 691-693
[10]  
Kaneko M(1975)Historical remark on a theorem of Zhang and Yue Astérisque 24–25 81-97