Topological entropy of continuous self-maps on a graph

被引:0
作者
Juan Luis García Guirao
Jaume Llibre
Wei Gao
机构
[1] Universidad Politécnica de Cartagena,Departamento de Matemática Aplicada y Estadística
[2] Hospital de Marina,Departament de Matemàtiques
[3] Universitat Autònoma de Barcelona,School of Information Science and Technology
[4] Yunnan Normal University,undefined
来源
Computational and Applied Mathematics | 2019年 / 38卷
关键词
Topological graph; Discrete dynamical systems; Lefschetz numbers; Lefschetz zeta function; Periodic point; Period; Topological entropy; 37E25; 37C25; 37C30;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a graph and f be a continuous self-map on G. Using the Lefschetz zeta function of f, we provide a sufficient condition in order that f has positive topological entropy. Moreover, for some classes of graphs we improve this condition making it easier to check.
引用
收藏
相关论文
共 23 条
  • [1] Adler RL(1965)Topological entropy Trans Am Math Soc 114 309-319
  • [2] Konheim AG(2016)On problems of Topological Dynamics in non-autonomous discrete systems Appl Math Nonlinear Sci 1 391-404
  • [3] McAndrew MH(1971)Entropy for group endomorphisms and homogeneous spaces Trans Am Math Soc 153 401-414
  • [4] Balibrea F(1992)Algebraic properties of the Lefschetz zeta function, periodic points and topological entropy Publ Math 36 467-472
  • [5] Bowen R(1995)Periodic points of Int J Bifurcation Chaos 5 1369-1373
  • [6] Casasayas J(2017) maps and the asymptotic Lefschetz number Houston J Math 43 1337-1347
  • [7] Llibre J(1985)Topological entropy and peridods of self-maps on compact manifolds Adv Math 56 173-191
  • [8] Nunes A(1993)New proofs of some results of Nielsen Comtemp Math 152 183-202
  • [9] Guaschi J(1996)Nilsen theory for periodic orbits and applications to dynamical systems Pac J Math 172 151-185
  • [10] Llibre J(1998)Estimation of the number of periodic orbits Sci China Ser A Math 41 33-38