Parameters of broadening of water molecule absorption lines by argon derived using different line profile models

被引:15
作者
Petrova T.M. [1 ]
Solodov A.M. [1 ]
Shcherbakov A.P. [1 ]
Deichuli V.M. [1 ,2 ]
Solodov A.A. [1 ]
Ponomarev Y.N. [1 ]
Chesnokova T.Y. [1 ]
机构
[1] V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Science, Tomsk
[2] Tomsk State University, Tomsk
关键词
absorption line parameters; Fourier transform spectrometer; speed-dependent Voigt profile; water molecule;
D O I
10.1134/S1024856017020105
中图分类号
学科分类号
摘要
The water vapor absorption spectrum was measured in the spectral region 6700–7650 cm–1 with argon as a buffer gas. The room-temperature spectrum was measured using a Bruker IFS 125-HR Fourier Transform Spectrometer with high signal-to-noise ratio, with a spectral resolution of 0.01 cm–1, at argon pressures from 0 to 0.9 atm. The H2O absorption spectral line parameters are derived by fitting two line shape profiles (Voigt and speed-dependent Voigt) to the experimental spectrum. It is shown that the use of speed-dependent Voigt profile provides the best agreement with experimental data. © 2017, Pleiades Publishing, Ltd.
引用
收藏
页码:123 / 128
页数:5
相关论文
共 24 条
[1]  
Hartmann J.-M., Boulet C., Robert D., Collisional Effects on Molecular Spectra: Laboratory Experiments and Models, Consequences for Application, (2008)
[2]  
Lisak D., Cygan A., Bermejo D., Domenech J.L., Hodges J.T., Tran H., Application of the Hartmann–Tran profile to analysis of H<sub>2</sub>O spectra, J. Quant. Spectrosc. Radiat. Transfer, 164, pp. 221-233, (2015)
[3]  
Ngo N.H., Lisak D., Tran H., Hartmann J.-M., An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes, J. Quant. Spectrosc. Radiat. Transfer, 129, pp. 89-100, (2013)
[4]  
Tennyson J., Bernath P.F., Campargue A., Csaszar A.G., Daumont L., Gamache R.R., Hodges J.T., Lisak D., Naumenko O.V., Rothman L.S., Tran H., Zobov N.F., Buldyreva J., Boone C.D., De Vizia M.D., Gianfrani L., Hartmann J.-M., McPheat R., Weidmann D., Murray J., Ngo N.H., Polyansky O.N., Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report), Pure Appl. Chem., 86, 12, pp. 1931-1943, (2014)
[5]  
Dicke R.H., The effect of collisions upon the Doppler width of spectral lines, Phys. Rev., 89, 2, pp. 472-474, (1953)
[6]  
Rautian S.G., Sobel'man I.I., Collisional effect on the Doppler broadening of spectral lines, Uspekhi Fiz. Nauk, 90, 2, pp. 209-236, (1966)
[7]  
Fano V., Pressure broadening as a prototype of relaxation, Phys. Rev., 131, 1, pp. 259-268, (1963)
[8]  
Berman P.R., Speed-dependent collisional width and shift parameters in spectral line profiles, J. Quant. Spectrosc. Radiat. Transfer, 12, 9, pp. 1331-1342, (1972)
[9]  
Rautian S.G., Universal asymptotic profile of a spectral line under a small Doppler broadening, Opt. Spectrosc., 90, 1, pp. 47-58, (2001)
[10]  
Galatry L., Simultaneous effect of Doppler and foreign gas broadening on spectral lines, Phys. Rev., 122, 4, pp. 1218-1223, (1961)