A note on the asymptotic symmetries of electromagnetism

被引:0
|
作者
Oscar Fuentealba
Marc Henneaux
Cédric Troessaert
机构
[1] Université Libre de Bruxelles and International Solvay Institutes,
[2] Collège de France,undefined
[3] Haute-Ecole Robert Schuman,undefined
来源
Journal of High Energy Physics | / 2023卷
关键词
Gauge Symmetry; Global Symmetries; Space-Time Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
We extend the asymptotic symmetries of electromagnetism in order to consistently include angle-dependent u(1) gauge transformations ϵ that involve terms growing at spatial infinity linearly and logarithmically in r, ϵ ~ a(θ, φ)r + b(θ, φ) ln r + c(θ, φ). The charges of the logarithmic u(1) transformations are found to be conjugate to those of the O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(1) transformations (abelian algebra with invertible central term) while those of the O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(r) transformations are conjugate to those of the subleading O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(r−1) transformations. Because of this structure, one can decouple the angle-dependent u(1) asymptotic symmetry from the Poincaré algebra, just as in the case of gravity: the generators of these internal transformations are Lorentz scalars in the redefined algebra. This implies in particular that one can give a definition of the angular momentum which is free from u(1) gauge ambiguities. The change of generators that brings the asymptotic symmetry algebra to a direct sum form involves non linear redefinitions of the charges. Our analysis is Hamiltonian throughout and carried at spatial infinity.
引用
收藏
相关论文
共 50 条
  • [1] A note on the asymptotic symmetries of electromagnetism
    Fuentealba, Oscar
    Henneaux, Marc
    Troessaert, Cedric
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (03)
  • [2] Asymptotic symmetries of electromagnetism at spatial infinity
    Marc Henneaux
    Cédric Troessaert
    Journal of High Energy Physics, 2018
  • [3] Asymptotic symmetries of electromagnetism at spatial infinity
    Henneaux, Marc
    Troessaert, Cedric
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):
  • [4] Note on asymptotic symmetries and soft gluon theorems
    Mao, Pujian
    Wu, Jun-Bao
    PHYSICAL REVIEW D, 2017, 96 (06)
  • [5] A note on asymptotic symmetries and soft-photon theorem
    Arif Mohd
    Journal of High Energy Physics, 2015
  • [6] A note on asymptotic symmetries and soft-photon theorem
    Mohd, Arif
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (02):
  • [7] ELECTROMAGNETISM OF HADRONS AND HIGHER SYMMETRIES
    ROLNICK, WB
    PHYSICAL REVIEW LETTERS, 1966, 17 (07) : 416 - &
  • [8] Symmetries and pre-metric electromagnetism
    Delphenich, DH
    ANNALEN DER PHYSIK, 2005, 14 (11-12) : 663 - 704
  • [9] A note on gravitation and electromagnetism
    Sidharth, B. G.
    Das, Abhishek
    MODERN PHYSICS LETTERS A, 2018, 33 (13)
  • [10] A note on the geometry of electromagnetism
    Sidharth, B. G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2014, 23 (11)