Detection of early-universe gravitational-wave signatures and fundamental physics

被引:0
作者
Robert Caldwell
Yanou Cui
Huai-Ke Guo
Vuk Mandic
Alberto Mariotti
Jose Miguel No
Michael J. Ramsey-Musolf
Mairi Sakellariadou
Kuver Sinha
Lian-Tao Wang
Graham White
Yue Zhao
Haipeng An
Ligong Bian
Chiara Caprini
Sebastien Clesse
James M. Cline
Giulia Cusin
Bartosz Fornal
Ryusuke Jinno
Benoit Laurent
Noam Levi
Kun-Feng Lyu
Mario Martinez
Andrew L. Miller
Diego Redigolo
Claudia Scarlata
Alexander Sevrin
Barmak Shams Es Haghi
Jing Shu
Xavier Siemens
Danièle A. Steer
Raman Sundrum
Carlos Tamarit
David J. Weir
Ke-Pan Xie
Feng-Wei Yang
Siyi Zhou
机构
[1] Dartmouth College,Department of Physics and Astronomy
[2] University of California,Department of Physics and Astronomy
[3] University of Utah,Department of Physics and Astronomy
[4] University of Minnesota,School of Physics and Astronomy
[5] Theoretische Natuurkunde and IIHE/ELEM,Physics Department
[6] Vrije Universiteit Brussel,Department of Physics and Astronomy
[7] and International Solvay Institutes,Department of Physics
[8] Instituto de Física Teórica UAM/CSIC,Department of Physics
[9] Tsung Dao Lee Institute/Shanghai Jiao Tong University,Center for High Energy Physics
[10] University of Massachusetts,Center for High Energy Physics
[11] King’s College London,Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics
[12] University of Oklahoma,Theoretical Physics Department
[13] University of Chicago,Service de Physique Théorique (CP225)
[14] Kavli IPMU (WPI),Department of Physics
[15] UTIAS,Department of Chemistry and Physics
[16] The University of Tokyo,Raymond and Beverly Sackler School of Physics and Astronomy
[17] Tsinghua University,School of Physical Sciences
[18] Tsinghua University,School of Fundamental Physics and Mathematical Sciences
[19] Peking University,Department of Physics
[20] Chongqing University,Department of Physics and Helsinki Institute of Physics
[21] University of Geneva,Department of Physics and Astronomy
[22] CERN,Department of Physics
[23] Theoretical Physics Department,undefined
[24] University of Brussels (ULB),undefined
[25] Boulevard du Triomphe,undefined
[26] McGill University,undefined
[27] Sorbonne Université,undefined
[28] CNRS,undefined
[29] UMR 7095,undefined
[30] Institut d’Astrophysique de Paris,undefined
[31] Barry University,undefined
[32] Tel-Aviv University,undefined
[33] Institut de Física d’Altes Energies,undefined
[34] Barcelona Institute of Science and Technology and ICREA,undefined
[35] Université catholique de Louvain,undefined
[36] INFN,undefined
[37] CAS Key Laboratory of Theoretical Physics,undefined
[38] Insitute of Theoretical Physics,undefined
[39] Chinese Academy of Sciences,undefined
[40] University of Chinese Academy of Sciences,undefined
[41] Hangzhou Institute for Advanced Study,undefined
[42] University of Chinese Academy of Sciences,undefined
[43] International Center for Theoretical Physics Asia-Pacific,undefined
[44] Oregon State University,undefined
[45] Laboratoire Astroparticule et Cosmologie,undefined
[46] CNRS,undefined
[47] Université Paris Cité,undefined
[48] University of Maryland,undefined
[49] Physik-Department T70,undefined
[50] Technische Universität München,undefined
来源
General Relativity and Gravitation | 2022年 / 54卷
关键词
Primordial gravitational waves; Inflation; Topological defects; Phase transitions; Dark matter; Collider and gravitational wave complementarity; Gravitational wave and EM correlation;
D O I
暂无
中图分类号
学科分类号
摘要
Detection of a gravitational-wave signal of non-astrophysical origin would be a landmark discovery, potentially providing a significant clue to some of our most basic, big-picture scientific questions about the Universe. In this white paper, we survey the leading early-Universe mechanisms that may produce a detectable signal—including inflation, phase transitions, topological defects, as well as primordial black holes—and highlight the connections to fundamental physics. We review the complementarity with collider searches for new physics, and multimessenger probes of the large-scale structure of the Universe.
引用
收藏
相关论文
共 1422 条
  • [1] Regimbau T(2017)Digging deeper: observing primordial gravitational waves below the binary-black-hole-produced stochastic background Phys. Rev. Lett. 118 34-686
  • [2] Evans M(2020)Subtracting compact binary foreground sources to reveal primordial gravitational-wave backgrounds Phys. Rev. D 102 685-2029
  • [3] Christensen N(2020)Searching for cosmological gravitational-wave backgrounds with third-generation detectors in the presence of an astrophysical foreground Phys. Rev. D 102 435-1398
  • [4] Katsavounidis E(2020)Measuring the primordial gravitational-wave background in the presence of astrophysical foregrounds Phys. Rev. Lett. 125 024-288
  • [5] Sathyaprakash B(2021)Upper limits on the isotropic gravitational-wave background from advanced ligo and advanced virgo’s third observing run Phys. Rev. D 104 025-3058
  • [6] Vitale S(2016)Gravitational-wave cosmology across 29 decades in frequency Phys. Rev. X 6 2026-857
  • [7] Sachdev S(2020)The NANOGrav 125 yr data set: search for an isotropic stochastic gravitational-wave background Astrophys. J. Lett. 905 024-3773
  • [8] Regimbau T(2017)Exploring the sensitivity of next generation gravitational wave detectors Class. Quant. Gravit. 34 1387-5500
  • [9] Sathyaprakash BS(2017)The Taiji Program in Space for gravitational wave physics and the nature of gravity Natl. Sci. Rev. 4 247-192
  • [10] Sharma A(2016)TianQin: a space-borne gravitational wave detector Class. Quant. Gravit. 33 3052-2855