Casting Defects Detection in Aluminum Alloys Using Deep Learning: a Classification Approach

被引:0
|
作者
Filip Nikolić
Ivan Štajduhar
Marko Čanađija
机构
[1] Elaphe Propulsion Technologies Ltd,CAE Department
[2] Cimos d.d. Automotive Industry,Research and Development Department
[3] University of Rijeka,Department of Computer Engineering, Faculty of Engineering
[4] University of Rijeka,Department of Engineering Mechanics, Faculty of Engineering
来源
International Journal of Metalcasting | 2023年 / 17卷
关键词
casting defects; convolutional neural network; casting microstructure inspection; deep learning; aluminum alloys;
D O I
暂无
中图分类号
学科分类号
摘要
The present research deals with the detection of porosity defects in aluminum alloys using convolutional neural networks (CNNs). The goal of this research is to build a CNN model that can accurately predict porosity defects in light optical microscopy images. To train the model, images of polished samples of several aluminum alloys containing a significant number of defects were used: EN AC 46000 AlSi9Cu3(Fe), EN AC 43400 AlSi10Mg(Fe), EN AC 47100 AlSi12Cu1(Fe), EN AC 51400 AlMg5(Si), EN AC 42000 AlSi7Mg0.6, EN AC 42000 AlSi7Mg and EN AC-44300 AlSi12(Fe)(a). Various types of porosity defects were included. The proposed custom CNN structure performed excellently in the test set: it correctly classified 3,990 images and made errors in only 254 images. Thus, the classification accuracy achieved was 94%. In addition, the performance of the model was tested with all the alloys used during the training at the nominal magnification (50×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}) as well as with the EN AC 46000 AlSi9Cu3(Fe) alloys at different magnifications (50×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 100×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 200×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 400×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, and 500×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}). Consequently, it is shown that deep learning models can be used to accurately predict porosity defects.
引用
收藏
页码:386 / 398
页数:12
相关论文
共 50 条
  • [31] Detection of external defects in tomatoes using deep learning
    Chaturvedi A.
    Sharma S.
    Janghel R.R.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (03) : 2709 - 2721
  • [32] Detection of Fiber Defects Using Keypoints and Deep Learning
    Siegmund, Dirk
    Fu, Biying
    Jose-Garcia, Adan
    Salahuddin, Ahmad
    Kuijper, Arjan
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (05)
  • [33] Deep Learning Approach for Image Classification
    Panigrahi, Santisudha
    Nanda, Anuja
    Swamkar, Tripti
    2ND INTERNATIONAL CONFERENCE ON DATA SCIENCE AND BUSINESS ANALYTICS (ICDSBA 2018), 2018, : 511 - 516
  • [34] A deep learning approach for ovarian cancer detection and classification based on fuzzy deep learning
    El-Latif, Eman I. Abd
    El-dosuky, Mohamed
    Darwish, Ashraf
    Hassanien, Aboul Ella
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [35] Enhancing Hyperspectral Image Analysis With Deep Learning: An Innovative Hybrid Approach for Improved Detection and Classification Using Deep-Detect
    Zulfiqar, Zeenat
    Zulfiqar, Zubair
    Khan, Nauman Ali
    Khan, Mudassar Ali
    Ud Din, Ikram
    Almogren, Ahmad
    Zareei, Mahdi
    Martinez, Moises Garcia
    IEEE ACCESS, 2024, 12 : 149272 - 149287
  • [36] Ransomware Detection and Classification Using Machine Learning and Deep Learning
    Ouerdi, Noura
    Mejjout, Brahim
    Laaroussi, Khadija
    Kasmi, Mohammed Amine
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024, 2024, 11 : 194 - 201
  • [37] Review of Industry Workpiece Classification and Defect Detection using Deep Learning
    Chen, Changxing
    Abdullah, Azween
    Kok, S. H.
    Tien, D. T. K.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (04) : 329 - 340
  • [38] A pilot study of a deep learning approach to submerged primary tooth classification and detection
    Caliskan, Secil
    Tuloglu, Nuray
    Celik, Ozer
    Ozdemir, Canan
    Kizilaslan, Sena
    Bayrak, Sule
    INTERNATIONAL JOURNAL OF COMPUTERIZED DENTISTRY, 2021, 24 (01) : 1 - +
  • [39] Wheel flat detection and severity classification using deep learning techniques
    Sresakoolchai, J.
    Kaewunruen, S.
    INSIGHT, 2021, 63 (07) : 393 - 402
  • [40] Classification of Metastatic Breast Cancer Cell using Deep Learning Approach
    Lee, Seohyun
    Kim, Hyuno
    Higuchi, Hideo
    Ishikawa, Masatoshi
    3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 425 - 428