Casting Defects Detection in Aluminum Alloys Using Deep Learning: a Classification Approach

被引:0
|
作者
Filip Nikolić
Ivan Štajduhar
Marko Čanađija
机构
[1] Elaphe Propulsion Technologies Ltd,CAE Department
[2] Cimos d.d. Automotive Industry,Research and Development Department
[3] University of Rijeka,Department of Computer Engineering, Faculty of Engineering
[4] University of Rijeka,Department of Engineering Mechanics, Faculty of Engineering
来源
International Journal of Metalcasting | 2023年 / 17卷
关键词
casting defects; convolutional neural network; casting microstructure inspection; deep learning; aluminum alloys;
D O I
暂无
中图分类号
学科分类号
摘要
The present research deals with the detection of porosity defects in aluminum alloys using convolutional neural networks (CNNs). The goal of this research is to build a CNN model that can accurately predict porosity defects in light optical microscopy images. To train the model, images of polished samples of several aluminum alloys containing a significant number of defects were used: EN AC 46000 AlSi9Cu3(Fe), EN AC 43400 AlSi10Mg(Fe), EN AC 47100 AlSi12Cu1(Fe), EN AC 51400 AlMg5(Si), EN AC 42000 AlSi7Mg0.6, EN AC 42000 AlSi7Mg and EN AC-44300 AlSi12(Fe)(a). Various types of porosity defects were included. The proposed custom CNN structure performed excellently in the test set: it correctly classified 3,990 images and made errors in only 254 images. Thus, the classification accuracy achieved was 94%. In addition, the performance of the model was tested with all the alloys used during the training at the nominal magnification (50×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}) as well as with the EN AC 46000 AlSi9Cu3(Fe) alloys at different magnifications (50×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 100×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 200×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 400×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, and 500×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}). Consequently, it is shown that deep learning models can be used to accurately predict porosity defects.
引用
收藏
页码:386 / 398
页数:12
相关论文
共 50 条
  • [1] CASTING DEFECTS DETECTION IN ALUMINUM ALLOYS USING DEEP LEARNING: A CLASSIFICATION APPROACH
    Nikolic, Filip
    Stajduhar, Ivan
    Canadija, Marko
    INTERNATIONAL JOURNAL OF METALCASTING, 2023, 17 (01) : 386 - 398
  • [2] Deep learning-based detection of aluminum casting defects and their types
    Parlak, Ismail Enes
    Emel, Erdal
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 118
  • [3] Detection and Classification of Defects in Plastic Components Using a Deep Learning Approach
    Mameli, Marco
    Paolanti, Marina
    Mancini, Adriano
    Frontoni, Emanuele
    Zingaretti, Primo
    INTELLIGENT AUTONOMOUS SYSTEMS 16, IAS-16, 2022, 412 : 713 - 722
  • [4] Detection and classification of painting defects using deep learning
    Adachi, Kazune
    Natori, Takahiro
    Aikawa, Naoyuki
    2021 36TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC), 2021,
  • [5] Detection and Classification of Fabric Defects Using Deep Learning Algorithms
    Geze, Recep Ali
    Akbas, Ayhan
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2024, 27 (01):
  • [6] Aluminum Casting Inspection using Deep Object Detection Methods and Simulated Ellipsoidal Defects
    Mery, Domingo
    MACHINE VISION AND APPLICATIONS, 2021, 32 (03)
  • [7] Aluminum Casting Inspection using Deep Object Detection Methods and Simulated Ellipsoidal Defects
    Domingo Mery
    Machine Vision and Applications, 2021, 32
  • [8] Casting Microstructure Inspection Using Computer Vision: Dendrite Spacing in Aluminum Alloys
    Nikolic, Filip
    Stajduhar, Ivan
    Canadija, Marko
    METALS, 2021, 11 (05)
  • [9] Drone Detection and Classification using Deep Learning
    Behera, Dinesh Kumar
    Raj, Arockia Bazil
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 1012 - 1016
  • [10] Deep learning for the detection and classification of adhesion defects in antique plaster layers
    Lo Giudice, Michele
    Mariani, Francesca
    Caliano, Giosue
    Salvini, Alessandro
    JOURNAL OF CULTURAL HERITAGE, 2024, 69 : 78 - 85