Estimation of the Large Deviations Parameter for a Single-Channel Queuing System with Regenerative Input Flow

被引:0
作者
G. A. Krylova
机构
[1] Moscow State University,Faculty of Mechanics and Mathematics
来源
Moscow University Mathematics Bulletin | 2019年 / 74卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A single-channel queuing system with regenerative input flow is considered. It is assumed that the stability condition is fulfilled. A statistical estimator of the parameter of large deviations of waiting time is proposed. Its consistency and asymptotic normality are proved, the asymptotic confidence interval for the parameter of large deviations is constructed.
引用
收藏
页码:141 / 146
页数:5
相关论文
共 14 条
  • [1] Sadowsky J S(1995)The Probability of Large Queue Lengths and Waiting Times in a Heterogeneous Multiserver Queue I: Tight Limits Adv. Appl. Probab. 27 532-undefined
  • [2] Szpankowski W(1972)Large Deviations in the Queuing Theory Period. Math. Hung. 2 165-undefined
  • [3] Baartfai P(1998)Large Deviations of the Steady-State Distribution of Reflected Processes with Applications to Queuing Systems Queuing Systems 29 351-undefined
  • [4] Majewski K(2017)Subexponential Asymptotics for Steady State Tail Probabilities in a Single-Server Queue with Regenerative Input Flow Teor. Veroyatn. i Primemen. 62 423-undefined
  • [5] Aibatov S Z(2016)Large Deviation Probabilities for the System Teor. Veroyatn. i Primemen. 61 378-undefined
  • [6] Afanas’eva L G(1995)1/∞ with Unreliable Server IEEE J. Selected Areas Communs. 13 981-undefined
  • [7] Aibatov S Z(2011)Entropy of ATM Traffic Streams: a Tool for Estimating QoS Parameters Queuing Systems 68 285-undefined
  • [8] Duffield N G(2014)Estimating Loynes’ Exponent Queueing systems 76 125-undefined
  • [9] Lewis J T(undefined)Coupling Method for Asymptotic Analysis of Queues with Regenerative Input and Unreliable Server undefined undefined undefined-undefined
  • [10] O’Connell N(undefined)undefined undefined undefined undefined-undefined