On the Chemical Potential of Ideal Fermi and Bose Gases

被引:0
|
作者
Brian Cowan
机构
[1] Royal Holloway University of London,Millikelvin Laboratory
来源
Journal of Low Temperature Physics | 2019年 / 197卷
关键词
Quantum gases; Chemical potential; Mathematica;
D O I
暂无
中图分类号
学科分类号
摘要
Knowledge of the chemical potential is essential in application of the Fermi–Dirac and the Bose–Einstein distribution functions for the calculation of properties of quantum gases. We give expressions for the chemical potential of ideal Fermi and Bose gases in 1, 2 and 3 dimensions in terms of inverse polylogarithm functions. We provide Mathematica functions for these chemical potentials together with low- and high-temperature series expansions. In the 3d Bose case we give also expansions about TB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{{{{\mathrm {B}}}}}$$\end{document}. The Mathematica routines for the series allow calculation to arbitrary order.
引用
收藏
页码:412 / 444
页数:32
相关论文
共 50 条
  • [31] ENERGY AND CHEMICAL POTENTIAL ASYMPTOTICS FOR THE GROUND STATE OF BOSE-EINSTEIN CONDENSATES IN THE SEMICLASSICAL REGIME
    Bao, Weizhu
    Lim, Fong Yin
    Zhang, Yanzhi
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2007, 2 (02): : 495 - 532
  • [32] Thermostatistics of a q-deformed relativistic ideal Fermi gas
    Hou, Xu-Yang
    Yan, H.
    Guo, Hao
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (11):
  • [33] Nonequilibrium statistical mechanics in one-dimensional bose gases
    Baldovin, F.
    Cappellaro, A.
    Orlandini, E.
    Salasnich, L.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [34] Ferromagnetic phase transition in charged spin-1 Bose gases
    Qin, Jihong
    Jian, Xiaoling
    Gu, Qiang
    26TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT26), PTS 1-5, 2012, 400
  • [35] Coherent splitting of two-dimensional Bose gases in magnetic potentials
    Barker, A. J.
    Sunami, S.
    Garrick, D.
    Beregi, A.
    Luksch, K.
    Bentine, E.
    Foot, C. J.
    NEW JOURNAL OF PHYSICS, 2020, 22 (10):
  • [36] Critical properties of weakly interacting Bose gases as modified by a harmonic confinement
    Reyes-Ayala, I.
    Poveda-Cuevas, F. J.
    Seman, J. A.
    Romero-Rochin, V.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [37] Equations of state from individual one-dimensional Bose gases
    Salces-Carcoba, F.
    Billington, C. J.
    Putra, A.
    Yue, Y.
    Sugawa, S.
    Spielman, I. B.
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [38] Diamagnetism versus paramagnetism in charged spin-1 Bose gases
    Jian, Xiaoling
    Qin, Jihong
    Gu, Qiang
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (02)
  • [39] Impurity-induced pairing in two-dimensional Fermi gases
    Li, Ruipeng
    von Milczewski, Jonas
    Imamoglu, Atac
    Oldziejewski, Rafal
    Schmidt, Richard
    PHYSICAL REVIEW B, 2023, 107 (15)
  • [40] Pair Excitations and Parameters of State of Imbalanced Fermi Gases at Finite Temperatures
    S. N. Klimin
    J. Tempere
    Jeroen P. A. Devreese
    Journal of Low Temperature Physics, 2011, 165 : 261 - 274