A sparse approximation for fractional Fourier transform

被引:0
作者
Yang, Fang [1 ,2 ]
Chen, Jiecheng [1 ]
Qian, Tao [3 ]
Zhao, Jiman [4 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua, Peoples R China
[2] Wenzhou Polytech, Sch Gen Educ, Wenzhou, Peoples R China
[3] Macau Univ Sci & Technol, Macau Ctr Math Sci, Macau, Peoples R China
[4] Beijing Normal Univ, Sch Math Sci, Inst Math & Math Educ, Key Lab Math & Complex Syst,Minist Educ, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Fourier transform; Sparse representation; Analytical Hardy space; Paley-Wiener theorem; Adaptive Fourier decomposition; DECOMPOSITION; ALGORITHM; SPACES;
D O I
10.1007/s10444-024-10127-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper promotes a new sparse approximation for fractional Fourier transform, which is based on adaptive Fourier decomposition in Hardy-Hilbert space on the upper half-plane. Under this methodology, the local polynomial Fourier transform characterization of Hardy space is established, which is an analog of the Paley-Wiener theorem. Meanwhile, a sparse fractional Fourier series for chirp L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L<^>2 $$\end{document} function is proposed, which is based on adaptive Fourier decomposition in Hardy-Hilbert space on the unit disk. Besides the establishment of the theoretical foundation, the proposed approximation provides a sparse solution for a forced Schro<spacing diaeresis>\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{\textrm{o}}$$\end{document}dinger equations with a harmonic oscillator.
引用
收藏
页数:19
相关论文
共 43 条